Advertisement

Handwritten Digit Classification Based on Alpha-Beta Associative Model

  • Luis Octavio López-Leyva
  • Cornelio Yáñez-Márquez
  • Rolando Flores-Carapia
  • Oscar Camacho-Nieto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

In this paper we present a new model appropriate for pattern recognition tasks. This new model, called αβ Associative Model, arises when taking theoretical elements from the αβ associative memories, and they are merged with several new mathematical transforms. When applied to handwritten digits recognition, namely in the MNIST database, the αβ Associative Model exhibits competitive results against some of the most widely known algorithms currently available in scientific literature.

Keywords

Handwritten digits classification Alpha-Beta associative model MNIST database 

References

  1. 1.
    Cheng, D., Yan, H.: Recognition of handwritten digits based on contour information. Pattern Recognition 31(3), 235–255 (1998)CrossRefGoogle Scholar
  2. 2.
    Saradhi, V.V., Murty, M.N.: Bootstrapping for efficient handwritten digit recognition. Pattern Recognition 34(5), 1047–1056 (2001)CrossRefzbMATHGoogle Scholar
  3. 3.
    Zhang, B., Fu, M., Yan, H.: Nonlinear neural network model of mixture of local principal component analysis: application to handwritten digits recognition. Pattern Recognition 34(2), 203–214 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Savas, B., Eldén, L.: Handwritten digit classification using higher order singular value decomposition. Pattern Recognition 40(3), 993–1003 (2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    Liu, C.-L., Nakashima, K., Sako, H., Fujisawa, H.: Handwritten digit recognition: Benchmarking of state-of-the-art techniques. Pattern Recognition 36(10), 2271–2285 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Suen, C.Y., Tan, J.: Analysis of errors of handwritten digits made by a multitude of classifiers. Pattern Recognition Letters 26(3), 369–379 (2005)CrossRefGoogle Scholar
  7. 7.
    Mayora-Ibarra, O., Curatelli, F.: Handwritten digit recognition by means of a holographic associative memory. Expert Systems with Applications 15(3-4), 399–403 (1998)CrossRefGoogle Scholar
  8. 8.
    Yáñez-Márquez, C.: Memorias Asociativas Basadas en Relaciones de Orden y Operadores Binarios (in Spanish). Ph.D. Thesis. National Polytechnics Institute, Computers Research Center, Mexico (2002)Google Scholar
  9. 9.
    Ritter, G.X., Sussner, P., Diaz-de-Leon, J.L.: Morphological Associative Memories. IEEE Transactions on Neural Networks 9, 281–293 (1998)CrossRefGoogle Scholar
  10. 10.
    Yann LeCun, Courant Institute, NYU Corinna Cortes, Google Labs, New York The MNIST database of handwritten digits, http://yann.lecun.com/exdb/mnist/
  11. 11.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied to Document Recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  12. 12.
    Simard, P.Y., Steinkraus, D., Platt, J.: Best Practice for Convolutional Neural Networks Applied to Visual Document Analysis. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 958–962. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  13. 13.
    Decoste, D., Scholkopf, B.: Training Invariant Support Vector Machines. Machine Learning 46, 161–190 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Salakhutdinov, R.R., Hinton, G.E.: Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure. In: AI and Statistics, Puerto Rico (2007)Google Scholar
  15. 15.
    Ranzato, M.A., Huang, F.J., Boureau, Y.L., LeCun, Y.: Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition. In: Proc. Computer Vision and Pattern Recognition Conference (CVPR 2007). IEEE Press, Los Alamitos (2007)Google Scholar
  16. 16.
    Ranzato, M.A., Poultney, C., Chopra, S., LeCun, Y.: Efficient Learning of Sparse Representations with an Energy-Based Model. In: Platt, J., et al. (eds.) Advances in Neural Information Processing Systems (NIPS 2006). MIT Press, Cambridge (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Luis Octavio López-Leyva
    • 1
  • Cornelio Yáñez-Márquez
    • 1
  • Rolando Flores-Carapia
    • 1
  • Oscar Camacho-Nieto
    • 1
  1. 1.IPN Centro de Investigación en Computación Juan de Dios Bátiz s/n esq. Miguel Othón de Mendizábal Unidad Profesional Adolfo López Mateos Del. Gustavo A. MaderoMéxico, D.F.México

Personalised recommendations