Feature Selection through Dynamic Mesh Optimization

  • Rafael Bello
  • Amilkar Puris
  • Rafael Falcón
  • Yudel Gómez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

This paper introduces the Dynamic Mesh Optimization meta-heuristic, which falls under the evolutionary computation techniques. Moreover, we outline its application to the feature selection problem. A set of nodes representing subsets of features makes up a mesh which dynamically grows and moves across the search space. The novel methodology is compared with other existing meta-heuristic approaches, thus leading to encouraging empirical results.

Keywords

meta-heuristic evolutionary computation feature selection 

References

  1. 1.
    Bello, R., Nowé, A.: Using ACO and Rough Set Theory to Feature Selection. In: WSEAS Trans. on Information Science and Applications, pp. 512–517 (2005)Google Scholar
  2. 2.
    Bello, R., Nowé, A.: A Model Based on Ant Colony System and Rough Set Theory to Feature Selection. In: Genetic and Evolutionary Computation Conference (GECCO 2005), pp. 275–276 (2005)Google Scholar
  3. 3.
    Bello, R., Puris, A., Nowé, A., Martínez, Y., García, M.: Two-Step Ant Colony System to Solve the Feature Selection Problem. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 588–596. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bello, R., Gómez, Y., Nowé, A., García, M.: Two-Step Particle Swarm Optimization to Solve the Feature Selection Problem. In: Proc. of 7th Int’l Conf. on Intelligent Systems Design and Applications, pp. 691–696. IEEE Computer Society, Washington (2007)Google Scholar
  5. 5.
    Dash, M., Liu, H.: Consistency-based Search in Feature Selection. Artificial Intelligence 151, 155–176 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. Cambridge University Press, New York (2005)MATHGoogle Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Boston (1989)MATHGoogle Scholar
  8. 8.
    Jensen, R., Shen, Q.: Finding Rough Set Reducts with Ant Colony Optimization. In: Proceedings of 6th Annual UK Workshop on Computational Intelligence, pp. 15–22 (2003)Google Scholar
  9. 9.
    Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proc. of IEEE Int’l. Conf. on Neural Networks, pp. 1942–1948. IEEE Service Center, Piscataway (1995)CrossRefGoogle Scholar
  10. 10.
    Kennedy, J., Eberhart, R.C.: A Discrete Binary Version of the Particle Swarm Optimization Algorithm. In: Proc. of Int’l Conf. on Systems, Man and Cybernetics, pp. 4104–4109. IEEE Service Center, Piscataway (1997)Google Scholar
  11. 11.
    Komorowski, J., Polkowski, L., Skowron, A.: Rough Sets: a Tutorial. In: Pal, S., Skowron, A. (eds.) Rough-Fuzzy Hybridization: A New Trend in Decision-Making. Springer, New York (1999)Google Scholar
  12. 12.
    Kudo, M., Sklansky, J.: Comparison of Algorithms that Select Features for Pattern Classifiers. Pattern Recognition 33, 25–41 (2000)CrossRefGoogle Scholar
  13. 13.
    Wang, X., Yang, Y., Peng, N., Teng, X.: Finding Minimal Rough Set Reducts with Particle Swarm Optimization. In: Slezak, D., Yao, J., Peters, J., Zizrko, W., Xiaohua, H. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 451–460. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Wang, X., Yang, J., Jensen, R., Liu, X.: Rough Set Feature Selection and Rule Induction for Prediction of Malignancy Degree in Brain Glioma. Computer methods and Programs in Biomedicine 83, 147–156 (2006)CrossRefGoogle Scholar
  15. 15.
    Wang, X., Yang, J., Teng, X., Xia, W., Jensen, R.: Feature Selection Based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters 28, 459–471 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rafael Bello
    • 1
  • Amilkar Puris
    • 1
  • Rafael Falcón
    • 1
  • Yudel Gómez
    • 1
  1. 1.Universidad Central de Las Villas (UCLV)Santa ClaraCuba

Personalised recommendations