Advertisement

Structural Construction for On-Line Mathematical Formulae Recognition

  • Daniel Průša
  • Václav Hlaváč
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

We present a method for on-line mathematical formulae recognition based on the structural construction paradigm and two-dimensional grammars. In general, this approach can be successfully used in the analysis of inputs composed of objects that exhibit rich structural relations. An important benefit of the structural construction is in not treating symbols segmentation and structural analysis as two separate processes which allows the system to perform segmentation in the context of the whole formula structure – this helps to solve arising ambiguities more reliably. We show that the proposed method can be effectively implemented and practically used.

Keywords

formulae recognition two-dimensional grammars 

References

  1. 1.
    Berg, M., Schwarzkopf, O., Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chan, K.-F., Yeung, D.-Y.: Mathematical Expression Recognition: a Survey. International Journal on Document Analysis and Recognition 3, 3–15 (2000)CrossRefGoogle Scholar
  3. 3.
    Eto, Y., Suzuki, M.: Mathematical Formula Recognition Using Virtual Network. In: Proceedings of ICDAR 2001, pp. 762–767. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  4. 4.
    Kiyko, V.M.: Recognition of Objects in Images of Paper Based Line Drawings. In: Proceedings of ICDAR 1995, pp. 970–973. IEEE Computer Society, Washington (1995)Google Scholar
  5. 5.
    Lavirotte, S., Pottier, L.: Mathematical Formula Recognition Using Graph Grammar. In: Proceedings of SPIE 1998, San Jose, vol. 3305, pp. 44–52 (1998)Google Scholar
  6. 6.
    Prusa, D., Hlavac, V.: Mathematical Formulae Recognition using 2D Grammars. In: Proceedings of ICDAR 2007, Curitiba, vol. 2, pp. 849–853 (2007)Google Scholar
  7. 7.
    Savchynsky, B., Schlesinger, M.I., Anochina, M.O.: Parsing and Recognition of Printed Notes. In: Proceedings of the conference Control Systems and Computers, pp. 30–38. Kiev (2003)Google Scholar
  8. 8.
    Schlesinger, M.I., Hlavac, V.: Ten Lectures on Statistical and Structural Pattern Recognition. Kluwer Academic Publishers, Dordrecht (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Toyota, S., Uchida, S., Suzuki, M.: Structural Analysis of Mathematical Formulae with Verification Based on Formula Description Grammar. In: Procceedings of the 7th International Workshop DAS, pp. 153–163. Nelson, New Zealand (2006)Google Scholar
  10. 10.
    Toyozumi, K., Yamada, N., Mase, K., Kitasaka, T., Mori, K., Suenaga, Y., Takahashi, T.: A Study of Symbol Segmentation Method for Handwritten Mathematical Formula Recognition using Mathematical Structure Information. In: Proceedings of ICPR 2004, Cambridge, vol. 2, pp. 630–633 (2004)Google Scholar
  11. 11.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Daniel Průša
    • 1
  • Václav Hlaváč
    • 1
  1. 1.Faculty of Electrical Engineering Department for Cybernetics, Center for Machine PerceptionCzech Technical UniversityPrague 2Czech Republic

Personalised recommendations