Offline Signature Verification Using Local Interest Points and Descriptors

  • Javier Ruiz-del-Solar
  • Christ Devia
  • Patricio Loncomilla
  • Felipe Concha
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)


In this article, a new approach to offline signature verification, based on a general-purpose wide baseline matching methodology, is proposed. Instead of detecting and matching geometric, signature-dependent features, as it is usually done, in the proposed approach local interest points are detected in the signature images, then local descriptors are computed in the neighborhood of these points, and afterwards these descriptors are compared using local and global matching procedures. The final verification is carried out using a Bayes classifier. It is important to remark that the local interest points do not correspond to any signature-dependent fiducial point, but to local maxima in a scale-space representation of the signature images. The proposed system is validated using the GPDS signature database, where it achieves a FRR of 16.4% and a FAR of 14.2%.


Signature Verification Matching techniques SIFT descriptors 


  1. 1.
    Ferrari, V., Tuytelaars, T., Van Gool, L.: Simultaneous Object Recognition and Segmentation by Image Exploration. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 40–54. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. 4th Alvey Vision Conf., pp. 147–151. Manchester, UK (1998)Google Scholar
  3. 3.
    Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Loncomilla, P., Ruiz-del-Solar, J.: Gaze Direction Determination of Opponents and Teammates in Robot Soccer. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 230–242. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Loncomilla, P., Ruiz-del-Solar, J.: A Fast Probabilistic Model for Hypothesis Rejection in SIFT-Based Object Recognition. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 696–705. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. Int. Journal of Computer Vision 60(1), 63–96 (2004)CrossRefGoogle Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Machine Intell. 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  8. 8.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A Comparison of Affine Region Detectors. Int. Journal of Computer Vision 65(1-2), 43–72 (2005)CrossRefGoogle Scholar
  9. 9.
    Schaffalitzky, F., Zisserman, A.: Automated location matching in movies. Computer Vision and Image Understanding 92(2-3), 236–264 (2003)CrossRefzbMATHGoogle Scholar
  10. 10.
    Leclerc, F., Plamondon, R.: Automatic Signature Verification: The State of the Art 1989-1993. Int. J. Pattern Recognition and Artificial Intelligence, Special Issue on Signature Verification 8(3), 643–660 (1984)CrossRefGoogle Scholar
  11. 11.
    Edson, J., Justino, R., Bortolozzi, F., Sabourin, R.: An Off-Line Signature Verification Using HMM for Random, Simple and Skilled Forgeries. In: Proc. Sixth Intl. Conf. Document Analysis and Recognition, pp. 1031–1034. IEEE Press, Washington (2001)Google Scholar
  12. 12.
    Martínez, L.E., Travieso, C.M., Alonso, J.B., Ferrer, M.A.: Parameterization Method of a Forgery Handwritten Signature Verification System Using SVM. In: Proc. 38th IEEE Int’l Carnahan Conf. Security Technology, pp. 193–196 (2004)Google Scholar
  13. 13.
    Ferrer, M.A., Alonso, J.B., Travieso, C.M.: Offline geometric parameters for automatic Signature Verification using fixed-point arithmetic. IEEE Trans. on Pattern Anal. Machine Intell. 27(6), 993–997 (2005)CrossRefGoogle Scholar
  14. 14.
    Huang, K., Yan, H.: Off-Line Signature Verification Based on Geometric Feature Extraction and Neural Network Classification. Pattern Recognition 30(1), 9–17 (1997)CrossRefGoogle Scholar
  15. 15.
    Justino, E.J.R., Bortolozzi, F., Sabourin, R.: A comparison of SVM and HMM classifiers in the off-line signature verification. Pattern Recognition Letters 26, 1377–1385 (2005)CrossRefGoogle Scholar
  16. 16.
    Kalera, M.K., Srihari, S., Xu, A.: Off-line signature verification and identification using distance statistics. Int. J. of Patt. Recog. and Artificial Intelligence 18(7), 1339–1360 (2004)CrossRefGoogle Scholar
  17. 17.
    Lv, H., Wang, W., Wang, C., Zhuo, Q.: Off-line Chinese Signature Verification based on Support Vector Machines. Pattern Recognition Letters 26, 2390–2399 (2005)CrossRefGoogle Scholar
  18. 18.
    Armand, S., Blumenstein, M., Muthukkumarasamy, V.: Off-line Signature Verification Using an Enhanced Modified Direction Feature with Single and Multi-classifier Approaches. IEEE Computational Intelligence Magazine, 18–25 (2007)Google Scholar
  19. 19.
    Ruiz-del-Solar, J., Loncomilla, P., Devia, C.: A New Approach for Fingerprint Verification based on Wide Baseline Matching using Local Interest Points and Descriptors. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 586–599. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    GPDS Signature Verification database,

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Javier Ruiz-del-Solar
    • 1
  • Christ Devia
    • 1
  • Patricio Loncomilla
    • 1
  • Felipe Concha
    • 1
  1. 1.Department of Electrical EngineeringUniversidad de ChileChile

Personalised recommendations