GeCiM: A Novel Generalized Approach to C-Means Clustering
Conference paper
Abstract
All three conventional c-means clustering algorithms have their advantages and disadvantages. This paper presents a novel generalized approach to c-means clustering: the objective function is considered to be a mixture of the FCM, PCM, and HCM objective functions. The optimal solution is obtained via evolutionary computation. Our main goal is to reveal the properties of such mixtures and to formulate some rules that yield accurate partitions.
Keywords
fuzzy c-means clustering possibilistic c-means clustering hard c-means clustering evolutionary computation Download
to read the full conference paper text
References
- 1.Anderson, E.: The IRISes of the Gaspe peninsula. Bull. Amer. IRIS Soc. 59, 2–5 (1935)Google Scholar
- 2.Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition - Part I. IEEE Trans. Syst. Man Cybern. Part B. 29, 778–785 (1999)CrossRefGoogle Scholar
- 3.Barni, M., Capellini, V., Mecocci, A.: Comments on a possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 4, 393–396 (1996)CrossRefGoogle Scholar
- 4.Belacel, N., Hansen, P., Mladenovic, N.: Fuzzy J-means: a new heuristic for fuzzy clustering. Patt. Recogn. 35, 2193–2200 (2002)CrossRefMATHGoogle Scholar
- 5.Benyó, B.: Analysis of temporal patterns of physiological parameters. In: Kamruzzaman, J., Begg, R.K., Sarker, R.A. (eds.) Artificial neural networks in finance, health and manufacturing: potential and challenges, pp. 285–317. Idea Group Publishing, Hershey (2006)Google Scholar
- 6.Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum, New York (1981)CrossRefMATHGoogle Scholar
- 7.Cartwright, H.: An introduction to evolutionary computation and evolutionary algorithms. In: Johnston, R., Mingos, D.M.P. (eds.) Applications of evolutionary computation in chemistry. Structure and Bonding, vol. 110, pp. 1–32. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 8.Dasgupta, D., Michalewicz, Z. (eds.): Evolutionary algorithms in engineering applications. Springer, New York (2001)Google Scholar
- 9.Dennis Jr., J.E., Woods, D.J.: Optimization on Microcomputers: The Nelder-Mead Simplex Algorithm. In: Wouk, A. (ed.) New Computing Environments: Microcomputers in Large-Scale Computing, Soc. Ind. Appl. Math., Philadelphia, PA, pp. 116–122 (1987)Google Scholar
- 10.Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy c-means clustering algorithm. Patt. Recogn. Lett. 24, 1607–1612 (2003)CrossRefMATHGoogle Scholar
- 11.Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar
- 12.Hathaway, R.J., Bezdek, J.C.: Optimization of clustering by reformulation. IEEE Trans. Fuzzy Syst. 3, 241–245 (1995)CrossRefGoogle Scholar
- 13.Holland, J.H.: Adaptation in natural artificial systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
- 14.Karayiannis, N.B., Bezdek, J.C., Pal, N.R., Hathaway, R.J., Pai, P.I.: Repairs to GLVQ: a new family of competitive learning scheme. IEEE Trans. Neural Networks 7, 1062–1071 (1996)CrossRefGoogle Scholar
- 15.Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1, 98–110 (1993)CrossRefGoogle Scholar
- 16.Lagarias, J., Reeds, J., Wright, M., Wright, P.: Convergence properties of the Nelder-Mead simplex algorithm in low dimensions. SIAM J. Optim. 9, 112–147 (1998)CrossRefMATHGoogle Scholar
- 17.Pal, N.R., Bezdek, J.C., Tsao, E.C.K.: Generalized clustering networks and Kohonen’s self-organizing scheme. IEEE Trans. Neural Networks 4, 549–557 (1993)CrossRefGoogle Scholar
- 18.Yu, J.: General c-means clustering model. IEEE Trans. Patt. Recogn. Mach. Intell. 27, 1197–1211 (2005)CrossRefGoogle Scholar
- 19.Zadeh, L.A.: Fuzzy sets. Inform. Contr. 8, 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2008