A Thorough Analysis of the Suppressed Fuzzy C-Means Algorithm

  • László Szilágyi
  • Sándor M. Szilágyi
  • Zoltán Benyó
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)


Suppressed fuzzy c-means (s-FCM) clustering was introduced in [Fan, J. L., Zhen, W. Z., Xie, W. X.: Suppressed fuzzy c-means clustering algorithm. Patt. Recogn. Lett. 24, 1607–1612 (2003)] with the intention of combining the higher speed of hard c-means (HCM) clustering with the better classification properties of fuzzy c-means (FCM) algorithm. They added an extra computation step into the FCM iteration, which created a competition among clusters: lower degrees of memberships were diminished according to a previously set suppression rate, while the largest fuzzy membership grew by swallowing all the suppressed parts of the small ones. Suppressing the FCM algorithm was found successful in the terms of accuracy and working time, but the authors failed to answer a series of important questions. In this paper we attempt to clarify the view upon the optimality and the competitive behavior of s-FCM via analytical computations and numerical analysis.


fuzzy c-means algorithm suppressed fuzzy c-means algorithm competitive clustering alternating optimization 


  1. 1.
    Anderson, E.: The IRISes of the Gaspe peninsula. Bull. Amer. IRIS Soc. 59, 2–5 (1935)Google Scholar
  2. 2.
    Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum, New York (1981)CrossRefzbMATHGoogle Scholar
  3. 3.
    Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans. Patt. Anal. Machine Intell. 8, 248–255 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy c-means clustering algorithm. Patt. Recogn. Lett. 24, 1607–1612 (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Hung, W.L., Yang, M.S., Chen, D.H.: Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation. Patt. Recogn. Lett. 27, 424–438 (2006)CrossRefGoogle Scholar
  6. 6.
    Kamel, M.S., Selim, S.Z.: New algorithms for solving the fuzzy clustring problem. Patt. Recogn. 27, 421–428 (1994)CrossRefGoogle Scholar
  7. 7.
    Karayiannis, N.B., Bezdek, J.C.: An integrated approach to fuzzy learning vector quantization and fuzzy c-means clustering. IEEE Trans. Fuzzy Syst. 5, 622–628 (1997)CrossRefGoogle Scholar
  8. 8.
    Wei, L.M., Xie, W.X.: Rival checked fuzzy c-means algorithm. Acta Electr. Sin. 28, 63–66 (2000)Google Scholar
  9. 9.
    Tsao, E.C.K., Bezdek, J.C., Pal, N.R.: Fuzzy Kohonen clustering networks. Patt. Recogn. 27, 757–764 (1994)CrossRefGoogle Scholar
  10. 10.
    Yair, E., Zeger, K., Gersho, A.: Competitive learning and soft competition for vector quantization design. IEEE Trans. Sign. Proc. 40, 294–309 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • László Szilágyi
    • 1
    • 2
  • Sándor M. Szilágyi
    • 1
  • Zoltán Benyó
    • 1
  1. 1.SapientiaHungarian Science University of Transylvania,Faculty of Technical and Human ScienceTârgu-MureşRomania
  2. 2.Department of Control Engineering and Information TechnologyBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations