Mining Frequent Similar Patterns on Mixed Data

  • Ansel Y. Rodríguez-González
  • José Francisco Martínez-Trinidad
  • Jesús Ariel Carrasco-Ochoa
  • José Ruiz-Shulcloper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

Frequent Pattern Mining is an important task due to the relevance of repetitions on data, also it is a fundamental step in the Association Rule Mining. Most of the current algorithms for mining frequent patterns assume that two object subdescriptions are similar if and only if they are equal, but in soft sciences some other similarity functions are used. In this work, we focus on the search of frequent patterns on Mixed Data, incorporating similarity between objects. We propose a novel and efficient algorithm to mine frequent similar patterns for a family of similarity functions that fulfill Downward Closure property and we also propose another algorithm for the remaining families of similarity functions. Some experiments over mixed datasets are done, and the results are compared against the ObjectMiner algorithm.

Keywords

data mining frequent pattern mixed data similarity functions 

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: 1993 ACM SIGMOD International Conference on Management of Data, Washington, USA, pp. 207–216 (1993)Google Scholar
  2. 2.
    Srikant, R., Agrawal, R.: Mining Quantitative Association Rules in Large Relational Tables. In: 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Canada, pp. 207–216 (1996)Google Scholar
  3. 3.
    Aouissi, S., Vrain, C., Nortet, C.: QuantMiner: A Genetic Algorithm for Mining Quantitative Association Rules. In: IJCAI 2007, Hyderabad, India, pp. 1035–1040 (2007)Google Scholar
  4. 4.
    Hong, T.P., Lee, Y.C.: An Overview of Mining Fuzzy Association Rules. Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, pp. 397–410. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Gómez, J., Rodriguez, O., Valladares, S., Ruiz-Shulcloper, J., et al.: Prognostic of Gas-oil Deposits in the Cuban Ophiological Association, Applying Mathematical Modeling. Geophys. Int. 33(3), 447–467 (1994)Google Scholar
  6. 6.
    Dánger, R., Ruiz-Shulcloper, J., Berlanga, R.: Objectminer: A New Approach for Mining Complex Objects. In: ICEIS 2004, Oporto, Portugal, pp. 42–47 (2004)Google Scholar
  7. 7.
    Trinidad, J.M., Shulcloper, J.R., Cortés, M.S.: Structuralization of Universes. Fuzzy Sets and System 112(3), 485–500 (2000)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ansel Y. Rodríguez-González
    • 1
    • 2
  • José Francisco Martínez-Trinidad
    • 2
  • Jesús Ariel Carrasco-Ochoa
    • 2
  • José Ruiz-Shulcloper
    • 1
  1. 1.Advanced Technologies Applications Center (CENATAV)HavanaCuba
  2. 2.National Institute of Astrophysics, Optics and Electronics (INAOE)PueblaMéxico

Personalised recommendations