Skip to main content

Noncontact Laser Calorimetry of High Temperature Melts in a Static Magnetic Field

  • Chapter
High-Temperature Measurements of Materials

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 11))

Numerical simulations are widely used for high value-added materials processing such as semiconductor crystal growth, casting of super high-temperature alloys for a jet-engine turbine blade, and for welding in automobile manufacturing [1, 2]. Process modeling involving a liquid-to-solid transition requires precise thermophysical properties of materials in the solid and liquid state at temperatures near their melting points. However, high-temperature materials such as liquid silicon are chemically reactive and are easily contaminated by their containers and contact materials. Therefore, it remains extremely difficult to measure the thermophysical properties of high-temperature liquids. Especially, the thermal conductivity of a high-temperature liquid is a difficult property to measure because of the existence of the buoyancy and Marangoni convections in the liquid. Not only from process modeling but also from a scientific perspective, thermal conductivity data of high-temperature metallic or semiconductor liquids are important to investigate whether the Wiedemann—Franz law [3] is applicable to them.

Fecht et al. [4–7] developed modulation calorimetry for electromagnetically levitated metallic melts. The radio frequency (rf) coil's power was modulated to provide sinusoidal heating to the sample melt. The heat capacities and hemispherical total emissivities of the melts were determined at higher temperatures.However, convections existing in the droplets make it difficult to measure the true thermal conductivity of the melts. Yasuda et al. [8] reported that motion of the center of gravity, surface oscillation, and convection of an electromagnetically levitated liquid metal were suppressed in a static magnetic field because of the Lorentz force resulting from interaction between the fluid flows and the static magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Hibiya, I. Egry, Meas. Sci. Technol. 16, 317 (2005)

    Article  ADS  CAS  Google Scholar 

  2. M. Mito, T. Tsukada, M. Hozawa, C. Yokoyama, Y.R. Li, N. Imaishi, Means. Sci. Technol. 16, 457 (2005)

    Article  ADS  CAS  Google Scholar 

  3. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996) p. 144

    Google Scholar 

  4. H.-J. Fecht, W.L. Johnson, Rev. Sci. Instrum. 62, 1299 (1991)

    Article  ADS  CAS  Google Scholar 

  5. R.K. Wunderlich, H.-J. Fecht, Appl. Phys. Lett. 62, 3111 (1993)

    Article  ADS  CAS  Google Scholar 

  6. R.K. Wunderlich, D.S. Lee, W.K. Johnson, H.-J. Fecht, Phys. Rev. B 55, 26 (1997)

    Article  ADS  CAS  Google Scholar 

  7. R.K. Wunderlich, H.-J. Fecht, Meas. Sci. Technol. 16, 402 (2005)

    Article  ADS  CAS  Google Scholar 

  8. H. Yasuda, I. Ohnaka, Y. Ninomiya, R. Ishii, S. Fujita, K. Kishio, J. Cryst. Growth 260, 475 (2004)

    Article  ADS  CAS  Google Scholar 

  9. H. Fukuyama, H. Kobatake, K. Takahashi, I. Minato, T. Tsukada, S. Awaji, Meas. Sci. Technol. 18, 2059 (2007)

    Article  ADS  CAS  Google Scholar 

  10. T. Tsukada, H. Fukuyama, H. Kobatake, Int. J. Heat Mass Trans. 50, 3054 (2007)

    Article  MATH  Google Scholar 

  11. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, S. Awaji, Appl. Phys. Lett. 90, 94102 (2007)

    Article  CAS  Google Scholar 

  12. Y. Kraftmakher, Modulation calorimetry, Theory and Applications (Springer, Berlin, 2003)

    Google Scholar 

  13. P.F. Sullivan, G. Seidel, Phys. Rev. 173, 679 (1968)

    Article  ADS  CAS  Google Scholar 

  14. H. Kawamura, H. Fukuyama, M. Watanabe, T. Hibiya, Meas. Sci. Technol. 16, 386 (2005)

    Article  ADS  CAS  Google Scholar 

  15. K. Higuchi, K. Kimura, A. Mizuno., M. Watanabe, Y. Katayama, K. Kuribayashi, Meas. Sci. Technol. 16, 381 (2005)

    Article  ADS  CAS  Google Scholar 

  16. J.H. Zong, B. Li, J. Szekely, Acta Astronautica 26, 435 (1992)

    Article  ADS  Google Scholar 

  17. B.Q. Li, S.P. Song, Microgravity Sci. Technol. XI, 134 (1998)

    Google Scholar 

  18. V. Bojarevics, K. Pericleous, ISIJ Int. 43, 890 (2003)

    Article  CAS  Google Scholar 

  19. R.W. Hyers, Meas. Sci. Technol. 16, 394 (2005)

    Article  ADS  CAS  Google Scholar 

  20. P.B. Kantor, A.M. Kisel, E.N. Fomichev, Ukr. Fiz. Zh. 5, 358 (1960)

    CAS  Google Scholar 

  21. K. Yamaguchi, K. Itagaki, J. Therm. Anal. Cal. 69, 1059 (2002)

    Article  CAS  Google Scholar 

  22. M. Olette, Compt. Rend. 244, 1033 (1957)

    CAS  Google Scholar 

  23. M.W. Chase Jr. (ed.), NIST-JANAF Thermochemical tables, 4th edn. (American Chemical Society and American Institute of Physics for the National Institute of Standards and Technology, Washington DC, 1998)

    Google Scholar 

  24. K. Yamamoto, T. Abe, S. Takasu, Jpn. J. Appl. Phys. 30, 2423 (1991)

    Article  ADS  CAS  Google Scholar 

  25. E. Takasuka, E. Tokizaki, K. Terashima, S. Kimura, in Proc. the 4th Asian Thermo5hys. Properties Conf. B1d3, 89 (1995)

    Google Scholar 

  26. T. Nishi, H. Shibata, H. Ohta, Mater. Trans. 44, 2369 (2003)

    Article  CAS  Google Scholar 

  27. H. Nagai, Y. Nakata, T. Tsurue, H. Minagawa, K. Kamada, E. Gustafsson, T. Okutani, Jpn. J. Appl. Phys. 39, 1405 (2000)

    Article  ADS  CAS  Google Scholar 

  28. E. Yamasue, M. Susa, H. Fukuyama, K. Nagata, J. Cryst. Growth 234, 121 (2002)

    Article  ADS  CAS  Google Scholar 

  29. N.E. Cusack, Rep. Prog. Phys. 26, 361 (1963)

    Article  ADS  CAS  Google Scholar 

  30. V.M. Glazov, V.B. Kolftsov, V.A. Kurbatov, Sov. Phys. Semicond. 20, 1351 (1986)

    Google Scholar 

  31. H. Sasaki, A. Ikari, K. Terashima, S. Kimura, Jpn. J Appl. Phys. 34, 3426 (1995)

    Article  ADS  CAS  Google Scholar 

  32. H.S. Schnyders, J.B. Van Zytveld, J. Phys. Condens. Matter 8, 10875 (1996)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroyuki Fukuyama , Takao Tsukada or Satoshi Awaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Fukuyama, H., Kobatake, H., Tsukada, T., Awaji, S. (2009). Noncontact Laser Calorimetry of High Temperature Melts in a Static Magnetic Field. In: Fukuyama, H., Waseda, Y. (eds) High-Temperature Measurements of Materials. Advances in Materials Research, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85918-5_8

Download citation

Publish with us

Policies and ethics