Skip to main content

Thermal Diffusivity Measurements of Oxide and Metallic Melts at High Temperature by the Laser Flash Method

  • Chapter
High-Temperature Measurements of Materials

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 11))

The importance of heat transfer properties such as thermal conductivity or thermal diffusivity of various materials at high temperature is strongly emphasized, in parallel with recent progress in surface technology for several electronic devices. Such importance has been well recognized in many pyrometallurgical processes related to plant design and accurate control of continuous casting in steelmaking. For example, heat transfer properties of molten salts are essential to design applications to heat transfer fluids for fusion reactors, breeder reactors, and thermal energy storage systems. Then, thermal property data of molten salts with sufficient reliability are strongly required to select an optimum composition of salt mixture for the desired condition [1]. We also need thermal property data of molten iron at elevated temperature and continuous casting powder melts consisting of various oxide components; SiO2, CaO, MgO, Al2O3, etc. for further improving the present continuous casting process for steel [2].

In producing single crystals supplied for devices of semiconductor compounds such as GaAs and GaP, using Czochralski method, the components of high vapor pressure of P and As are likely to diffuse from the master melt, causing the original compositions to vary. To reduce such trouble, boron oxide melts have widely been employed as liquid capsules to encase the semiconductor master melt [3]. It is necessary to minimize the temperature gradient in the melt by accurate temperature control for producing high quality singlecrystals with a low dislocation density. Although the thermal diffusivity of a liquid capsule material is one of the important properties, no report is available on the value of thermal diffusivity of molten boron oxide within the best knowledge of the present authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Gale, D.G. Lovering (eds.), Molten Salt Technology (Plenum, New York, 1982; 1991)

    Google Scholar 

  2. K.C. Mills, in Proc. 4th Inter. Conf. on Molten Slag and Fluxes, Iron Steel Institute of Japan, 1992, p 405

    Google Scholar 

  3. Editorial Committee of Crystal Growth Society of Japan, Handbook for Crystal Growth, Crystal Growth Society of Japan, 1995

    Google Scholar 

  4. Y.S. Touloukian, C.Y. Ho, P.E. Liley (eds.), Thermophysical Properties of Matter, (Plenum, New York, 1971)

    Google Scholar 

  5. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, J. Appl. Phys. 32, 1979 (1961)

    Article  Google Scholar 

  6. H. Ohta, G. Ogura, Y. Waseda, M. Suzuki, Y. Yamashita, Rev. Sci. Insrum, 61, 2645 (1990)

    Article  ADS  CAS  Google Scholar 

  7. Y. Waseda, M. Masuda, H. Ohta, in Proc. 4th Inter. Symp. on Advanced Nuclear Energy Research, Japan. Atomic Energy Research Institute, Tokai, Ibaraki, 1992, p 298

    Google Scholar 

  8. G. Ogura, I.K. Suh, H. Ohta, and Y. Waseda, J. Ceram. Soc. Jpn. 98, 320 (1990)

    Google Scholar 

  9. R.E. Taylor, High Temp. High Pressure 11, 43 (1979)

    CAS  Google Scholar 

  10. Y. Waseda, H. Ohta, Solid State Ionics 22, 263 (1987)

    Article  CAS  Google Scholar 

  11. H.M. James, J. Appl. Phys, 51, 4666 (1980)

    Article  ADS  Google Scholar 

  12. Y. Waseda, M. Masuda, K. Watanabe, H. Shibata, H. Ohta, and K. Nakajima, High Temp. Mater. Process 13, 267 (1994)

    CAS  Google Scholar 

  13. T. Nishi, H. Shibata, H. Ohta, Y. Waseda, Mater. Metallur. Trans. 34A, 2801 (2003)

    Article  CAS  Google Scholar 

  14. T. Nakamura, Ceramics and Heat (Gihodo, Tokyo, 1985), p 81

    Google Scholar 

  15. A.A. Ballman, J. Am. Ceram. Soc. 48, 112 (1965)

    Article  CAS  Google Scholar 

  16. H. Ogawa, H. Ohta, Y. Waseda, J. Cryst. Growth 133, 255 (1993)

    Article  ADS  CAS  Google Scholar 

  17. R.A. Morgan, K.I. Kang, C.C. Hsu, C.L. Kiliopoulos, N. Peyghambarian, Appl. Optics 26, 5266 (1987)

    Article  ADS  CAS  Google Scholar 

  18. Y. Zhou, J. Wang, P. Wangm, L. Tang, O. Zhu, Y. Wu, H. Tan, J. Cryst. Growth, 114, 87 (1991)

    Article  ADS  CAS  Google Scholar 

  19. E. Tokizaki, K. Terashima, S. Kimura, J. Cryst. Growth 123, 121 (1992)

    Article  ADS  CAS  Google Scholar 

  20. H. Ohta, M. Masuda, K. Watanabe, K. Nakajima, H. Shibata, Y. Waseda, Tetsu-to-Hagane 80, 463 (1994)

    CAS  Google Scholar 

  21. H. Ohta, K. Watanabe, K. Nakajima, Y. Waseda, High Temp. Mater. Process, 12, 139 (1993)

    CAS  Google Scholar 

  22. H. Ohta, K. Nakajima, M. Masuda, Y. Waseda, in Proc. 4th Inter. Symp. On Slags and Fluxes, Iron and Steel Inst. Japan, Tokyo, 1992, p 421

    Google Scholar 

  23. M.I. Darby, High Temp. High Pressure, 15, 629 (1983)

    Google Scholar 

  24. E.R. Eckert, R.M. Drake Jr., Analysis of Heat Transfer (McGraw-Hill, Kougakusha, Tokyo, 1972), p 254

    MATH  Google Scholar 

  25. S. Rosseland, Theoretical Astrophysics, Claredon Press, Oxford, (1936); cited in a book of R. Siegel and J.R. Howel, Themal Radiation Heat Transfer (McGraw-Hill, Kougakusha, Tokyo, 1972), p 470

    Google Scholar 

  26. T. Nishi, H. Shibata, H. Ohta, Mater. Trans. 44, 2369 (2003)

    Article  CAS  Google Scholar 

  27. H.S. Chen, Acta Metall. 22, 1504 (1974)

    Google Scholar 

  28. H.S. Chen, K.A. Jackson, Chapter 3 in Metallic Glasses, American Society for Metals, Metals park, Ohio, (1978), p 74

    Google Scholar 

  29. A. Inoue, T. Zhang, T. Masumoto, Mater. Trans. JIM 31, 177 (1990)

    CAS  Google Scholar 

  30. A. Inoue, Bulk Amorphous Alloys, Preparation and Fundamental Characteristics, Trans. Tech. Pub., Zurich, (1998)

    Google Scholar 

  31. N. Nishiyama, A. Inoue, Mater. Trans. JIM 37, 1531 (1996)

    CAS  Google Scholar 

  32. H. Shibata, S. Nishihata, H. Ohta, S. Suzuki, Y. Waseda, M. Imafuku, J. Saida, A. Inoue, Mater. Trans. 48, 886 (2007)

    Article  CAS  Google Scholar 

  33. T. Nishi, H. Shibata, H. Ohta, N. Nishiyama, A. Inoue, Y. Waseda, Phys. Rev. B 70, 174204 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroyuki Shibata , Hiromichi Ohta or Yoshio Waseda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Shibata, H., Ohta, H., Waseda, Y. (2009). Thermal Diffusivity Measurements of Oxide and Metallic Melts at High Temperature by the Laser Flash Method. In: Fukuyama, H., Waseda, Y. (eds) High-Temperature Measurements of Materials. Advances in Materials Research, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85918-5_5

Download citation

Publish with us

Policies and ethics