Two New Families of Low-Correlation Interleaved QAM Sequences

  • Gagan Garg
  • P. Vijay Kumar
  • C. E. Veni Madhavan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5203)

Abstract

Two families of low correlation QAM sequences are presented here. In a CDMA setting, these sequences have the ability to transport a large amount of data as well as enable variable-rate signaling on the reverse link.

The first family \({\cal I}^2{\cal SQ - B}\) is constructed by interleaving 2 selected QAM sequences. This family is defined over M2-QAM, where M = 2m, m ≥ 2. Over 16-QAM, the normalized maximum correlation \(\overline{\theta}_{\max}\) is bounded above by \( \lesssim 1.17 \, \sqrt{N}\), where N is the period of the sequences in the family. This upper bound on \(\overline{\theta}_{\max}\) is the lowest among all known sequence families over 16-QAM.

The second family \({\cal I}^4{\cal SQ}\) is constructed by interleaving 4 selected QAM sequences. This family is defined over M2-QAM, where M = 2m, m ≥ 3, i.e., 64-QAM and beyond. The \(\overline{\theta}_{\max}\) for sequences in this family over 64-QAM is upper bounded by \( \lesssim 1.60 \, \sqrt{N}\). For large M, \(\overline{\theta}_{\max} \lesssim 1.64 \, \sqrt{N}\). These upper bounds on \(\overline{\theta}_{\max}\) are the lowest among all known sequence families over M2-QAM, M = 2m, m ≥ 3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anand, M., Kumar, P.V.: Low Correlation Sequences over QAM and AM-PSK Constellations. IEEE Trans. Inform. Theory 54(2), 791–810 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Boztaş, S.: CDMA over QAM and other Arbitrary Energy Constellations. Proc. IEEE Int. Conf. on Comm. Systems 2, 21.7.1–21.7.5 (1996)Google Scholar
  3. 3.
    Boztaş, S.: New Lower Bounds on the Periodic Crosscorrelation of QAM Codes with Arbitrary Energy. In: Fossorier, M.P.C., Imai, H., Lin, S., Poli, A. (eds.) AAECC 1999. LNCS, vol. 1719, pp. 410–419. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Boztaş, S., Hammons, R., Kumar, P.V.: 4-phase sequences with near-optimum correlation properties. IEEE Trans. Inform. Theory 38(3), 1101–1113 (1992)MATHCrossRefGoogle Scholar
  5. 5.
    Garg, G., Kumar, P.V., Veni Madhavan, C.E.: Low correlation interleaved QAM sequences. In: Int. Symp. on Inf. Theory (ISIT), Toronto, Canada, July 6–11 (2008)Google Scholar
  6. 6.
    Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The ℤ4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Helleseth, T., Kumar, P.V.: Sequences with low correlation. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, Elsevier, Amsterdam (1998)Google Scholar
  8. 8.
    Kumar, P.V., Helleseth, T., Calderbank, A.R.: An upper bound for Weil exponential sums over Galois rings and applications. IEEE Trans. Inform. Theory 41(2), 456–468 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)MATHGoogle Scholar
  10. 10.
    Solé, P.: A quaternary cyclic code and a family of quadriphase sequences with low correlation properties. In: Coding Theory and Applications. LNCS, vol. 388. Springer, Heidelberg (1989)Google Scholar
  11. 11.
    Tang, X., Udaya, P.: A Note on the Optimal Quadriphase Sequences Families. IEEE Trans. Inform. Theory 53(1), 433–436 (2007)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Udaya, P., Siddiqi, M.U.: Optimal Biphase Sequences with Large Linear Complexity Derived from Sequences over Z4. IEEE Trans. on Inform. Theory 42(1), 206–216 (1996)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Welch, L.R.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory 20(3), 397–399 (1974)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Yang, K., Helleseth, T., Kumar, P.V., Shanbhag, A.: The weight hierarchy of Kerdock codes over ℤ4. IEEE Trans. Inform. Theory 42(5), 1587–1593 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gagan Garg
    • 1
  • P. Vijay Kumar
    • 2
  • C. E. Veni Madhavan
    • 1
  1. 1.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia
  2. 2.Department of Electrical Communication EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations