Advertisement

Umwelt: A Psychomotor Functional Event

  • Rodolfo R. Llinás
Part of the Research and Perspectives in Neurosciences book series (NEUROSCIENCE)

My basic posture concerning Umwelt (world view) is based on the assumption that our perception and understanding of “universals” derives from the functional properties of our brains. Such universals are ultimately constructed by the functional state we know as consciousness. From such a brain-centric perspective, Umwelt is what our brain makes from the sensory inputs arising from their responses to the external world and the ancestral brain network derived from our evolutionary history. Ultimately, then, our Umwelt derives from the sensory specification of internal brain function, mostly determined genetically and epigenetically during development and honed by the leaning process.

Keywords

Sensory Input Reticular Nucleus Gamma Oscillation Temporal Binding Delta Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bienenstock E, Von der Malsburg C (1986) Statistical coding and short-term synaptic plasticity: a scheme for knowledge representation in the brain. In: Bienenstock, E, Fogelman R, Weisbuch G (eds) Disordered Systems and Biological Organization. Les Houches: Springer-Verlag, pp. 247–272.Google Scholar
  2. Cajal SR (1929) Etude sur la neurogénese de quelques Vertébrés. Springfield, ThomasGoogle Scholar
  3. Castaigne P, Buge A, Escourolle R, Masson M (1962) Ramollissement pédonculaire médian, tegmento-thalamique avec ophtalmoplégie et hypersomnie. Rev Neurol 106:357–367.Google Scholar
  4. Crick F, Koch C (1990) Some reflections on visual awareness. Cold Spring Harbor Symp Quant Biol 55:953–962.PubMedGoogle Scholar
  5. Deschênes M, Madariaga-Domich A, Steriade M (1985) Dendrodendritic synapses in the cat reticularis thalami nucleus: A structural basis for thalamic spindle synchronization. Brain Res 334:165–168.PubMedCrossRefGoogle Scholar
  6. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitbock HJ (1988) Coherent oscillations: A mechanism of feature linking in the visual cortex? Biol Cybern 60:121–130.PubMedCrossRefGoogle Scholar
  7. Edelman GM (1987) Neuronal Darwinism: the theory of neuronal group selection. New York, Basic Books.Google Scholar
  8. Facon E, Steriade M, Wertheim N (1958) Hypersomnie prolongée engendrée par des lésions bi-latérales due systèm activateur médial le syndrome thrombotique de la biffurcation du tronc basilaire. Rev Neurol 98:117–133.PubMedGoogle Scholar
  9. Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78:2643–2647.PubMedCrossRefGoogle Scholar
  10. Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702.PubMedCrossRefGoogle Scholar
  11. Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchroniza-tion which reflects global stimulus properties. Nature 338:334– 337.PubMedCrossRefGoogle Scholar
  12. Harris WA (1987) Neurogenetics. In: Adelman G (ed) Encyclopedia of neuroscience, Basel, Birkäuser, pp. 791–793.Google Scholar
  13. Joliot M, Ribary U, Llinás R ((1994) Neuromagnetic oscillatory activity in the vecinity of 40 Hz coexists with cognitive temporal binding in the human brain. Proc Natl Acad Sci USA 91:11748– 11751.PubMedCrossRefGoogle Scholar
  14. Kristofferson AB (1984) Quantal and deterministic timing in human duration discrimination. Ann NY Acad Sci 423:3–15.PubMedCrossRefGoogle Scholar
  15. Llinás R (1990) Intrinsic electrical properties of mammalian neurons and CNS function. Fidia Research Foundation Neuroscience Award Lectures. Vol. 4.New York, Raven Press Ltd., pp. 1–10.Google Scholar
  16. Llinás R, Paré D (1991) Of dreaming and wakefulness. Neuroscience 44:521–535.PubMedCrossRefGoogle Scholar
  17. Llinás R, Pare R (1996) In: Llinas R, Churchland P The mind-brain continuum. Cambridge, MIT Press pp1–18.Google Scholar
  18. Llinás RR, Ribary U (1992) Rostrocaudal scan in human brain: a global characteristic of the 40-Hz response during sensory input. In: Basar E, Bullock T (eds) Induced rhythms in the brain. Chapter 7. Boston, Birkhäuser, pp. 147–154.Google Scholar
  19. Llinás R, Ribary U (1993) Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci USA 90:2078–2081.PubMedCrossRefGoogle Scholar
  20. Lllinás R, Ribary U (2001) Consciousness and the brain. The thalamocortical dialogue in health and disease. Ann NY Acad Sci 929:pp 166–175.CrossRefGoogle Scholar
  21. Llinás RR, Steriade M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95: 3297–3308.PubMedCrossRefGoogle Scholar
  22. Llinás R, Sugimori M (1980) Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol (London) 305:171–195.Google Scholar
  23. Llinás RR, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic activity in the 10 to 50 Hz frequency range. Proc Natl Acad Sci USA. 88:897–901.PubMedCrossRefGoogle Scholar
  24. Llinás R, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamo-cortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA Vol. 96: 15222–15227.PubMedCrossRefGoogle Scholar
  25. Mountcastle VB, Hennemann E (1949) Pattern of tactile representation in thalamus of cat. J Neu-rophysiol 12:85–100.Google Scholar
  26. Mountcastle VB, Hennemann E (1952) The representation of tactile sensibility in the thalamus of the monkey. J Comp Neurol 97:409–440.PubMedCrossRefGoogle Scholar
  27. Pantev C, Makeig, S, Hoke M, Galambos R, Hampson S, Gallen C (1991) Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci USA 88:8996–9000.PubMedCrossRefGoogle Scholar
  28. Pellionisz A, Llinás RR (1982) Space-time representation in the brain. The cerebellum as a predictive space-time metric tensor. Neuroscience 7:2949–2970.PubMedCrossRefGoogle Scholar
  29. Penfield W, Rasmussen T (1950) The cerebral cortex of man. New York, MacMillan.Google Scholar
  30. Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Ann Rev Physiol 55:349–374.CrossRefGoogle Scholar
  31. Steriade M (1991) Alertness, quiet sleep, dreaming In: Peters a. Jones EG (eds) Cerebral cortex. New York, Plenum, pp. 279–357.Google Scholar
  32. Steriade M, Parent A, Hada J (1984) Thalamic projections of reticular nucleus thalami of cat: A study using retrograde transport of horseradish peroxidase and double fluorescent tracers. J Comp Neurol 229:531–547.PubMedCrossRefGoogle Scholar
  33. Steriade M, Jones EG, Llinás R (1990) Thalamic oscillations and signalling. New York, John Wiley & Sons.Google Scholar
  34. Steriade M, Curr°Dossi R, Paré D, Oakson G (1991) Fast oscillations (20–40 Hz) in thalamocorti-cal systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci USA 88:4396–4400.PubMedCrossRefGoogle Scholar
  35. Steriade M, Curr°Dossi R, Contreras F (1993) Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (a40Hz) spike-bursts at a1000Hz during waking and rapid eye movement sleep. Neuroscience 56:1–9.PubMedCrossRefGoogle Scholar
  36. Von der Malsburg C (1981) The correlation theory of brain function. Internal report, Max-Planck Institute for Biophysical Chemistry. Goettingen Germany.Google Scholar
  37. Wilson JR, Friedlander MJ, Sherman SM (1984) Ultrastructural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus. Proc Royal Soc B 221:411–436.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Physiology and NeuroscienceNew York University Medical SchoolNew YorkUSA

Personalised recommendations