Skip to main content

The TeraShake Computational Platform for Large-Scale Earthquake Simulations

  • Chapter
Advances in Geocomputing

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 119))

Abstract

Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, D.J. (1999). Test of two methods for faulting in finite-difference calculations, Bull. Seism. Soc. Am., vol. 89, pp. 931–937

    Google Scholar 

  • Chaljub, E., D. Komatitsch, J.P. Vilotte, Y. Capdeville, G. Festa (2006). Spectral Element Analysis in Seismology. Advances in Wave Propagation in Heterogeneous Earth, Ru-Shan Wu and Valerie Maupin, eds., in the series Advances in Geophysics,, R. Dmowska, ed., Elsevier Academic Press. vol. 48, 365–419

    Google Scholar 

  • Chopra, P., J. Meyer, A. Fernandez (2002). Immersive volume visualization of seismic simulations: A case study of techniques invented and lessons learned, IEEE Visual., pp. 171–178

    Google Scholar 

  • Cui, Y., R. Moore, K. Olsen, A. Chourasia, P. Maechling, B. Minster, S. Day, Y. Hu, J. Zhu, A. Majumdar, T. Jordan (2007b). Enabling Very-Large Scale Earthquake Simulations on Parallel Machines, ICCS 2007, Part I, Lecture Notes in Computer Science Series, Vol 4487, pp. 46–53, Springer

    Google Scholar 

  • Cui, Y., R. Moore, K. Olsen, J. Zhu, L. Dalguer, S. Day, V. Cruz-Atienza, P. Maechling, T. Jordan (2007c). Mapping PetaShake Applications to TeraGrid architectures, Eos. Trans., vol. AGU 88, no. 52, Fall Meet Suppl, Abstract: IN21B-0483

    Google Scholar 

  • Cui, Y., K. Olsen, Y. Hu, S. Day, L. Dalguer, B. Minster, R. Moore, J. Zhu, P. Maechling, T. Jordan (2006). Optimization and scalability of a large-scale earthquake simulation application, Eos. Trans., vol. AGU 87, no. 52, Fall Meet Suppl, Abstract: S41C-1351

    Google Scholar 

  • Dalguer, L.A., S. Day (2007). Staggered-grid split-node method for spontaneous rupture simulation, J. Geophys. Res., vol. 112, B02302 DOI 10.1029/2006JB004467

    Google Scholar 

  • Day, S.M. (1998). Efficient simulation of constant Q using coarse-grained memory variables, Bull. Seism. Soc. Am., vol. 88, pp. 1051–1062

    Google Scholar 

  • Day, S.M., J. Bielak, D. Dreger, R. Graves, S. Larsen, K.B. Olsen, A. Pitarka (2003). Tests of 3D elastodynamic codes: Final report for Lifelines Project 1A02, Pacific Earthquake Engineering Research Center

    Google Scholar 

  • Day, S.M., C. Bradley (2001). Memory-efficient simulation of an-elastic wave propagation. Bull. Seis. Soc. Am. vol. 91, pp. 520–531 DSpace digital library, http://www.dspace.org/

    Article  Google Scholar 

  • Dunham, E.M., R.J. Archuleta (2005). Near-source ground motion from steady state dynamic rupture pulses, Geopys. Res. Lett., vol. 32, L03302, DOI 10.1029/2004GL021793

    Google Scholar 

  • Fedora digital object repository middleware, http://www.fedora.info/

  • GridSphere portal technology: http://www.gridsphere.org/

  • HDF5 – Hierarchical Data Format version 5, http://hdf.ncsa.uiuc.edu/HDF5/

  • Kajiya, J.T., B.P.V. Herzen (1984). Ray tracing volume densities, in Proc. SIGGRAPH, vol. 18, no. 3, pp. 165–174

    Article  Google Scholar 

  • Marcinkovich, C., K.B. Olsen (2003). On the implementation of perfectly matched layers in a 3D fourth-order velocity-stress finite-difference scheme, J. Geophys. Res., 2002JB002235

    Google Scholar 

  • Moczo, P., J. Kristek, M. Galis, P. Pazak, M. Balazovjech (2007). The finitedifference and finite-element modeling of seismic wave propagation and earthquake motion, Acta Phys. Alovaca., vol. 57, no. 2, 177-406

    Google Scholar 

  • Moore, R., A. Rajasekar, M. Wan (2005). Data grids, digital libraries and persistent archives: an integrated approach to publishing, sharing and archiving data, Special Issue of the Proc. IEEE Grid Comput., vol. 93, no. 3,, 578–588

    Google Scholar 

  • Olsen, K.B. (1994). Simulation of three-dimensional wave propagation in the Salt Lake Basin. Ph.D. thesis, The University of Utah, 157p

    Google Scholar 

  • Olsen, K.B., S.M. Day, C.R. Bradley (2003). Estimation of Q for long-period (>2s) waves in the Los Angeles Basin. Bull. Seis. Soc. Am. vol. 93, pp. 627–638

    Article  Google Scholar 

  • Olsen, K., S.M. Day, J.B. Minster, Y. Cui, A. Chourasia, M. Faerman, R. Moore, P. Maechling, T. Jordan (2006a). Strong shaking in Los Angeles expected from Southern San Andreas earthquake. Geophys. Res. Lett., vol. 33, 1–4

    Google Scholar 

  • Olsen, K.B., J. Zhu, J. Talley (2006b). Dynamic user interface for cross-plot, filtering and upload/download of time series data. Eos. Trans., vol. AGU 87, no. 52, Fall Meet. Suppl., Abstract, IN51B-0814

    Google Scholar 

  • Olsen, K.B., S.M. Day, J.B. Minster, Y. Cui, A. Chourasia, D. Okaya, P. Maechling, T. Jordan (2007). Tera Shake 2: Simulation of Mw7.7 earthquakes on the Southern San Andreas fault with spontaneous rupture description, accepted to Bull. Seis. Soc. Am. vol. 98, pp. 1162–1185, DOI:10.1785/012007148

    Article  Google Scholar 

  • Open Grid Forum, http://www.ogf.org/

  • Peyrat, S., K.B. Olsen, R. Madariaga (2001). Dynamic modeling of the 1992 Landers earthquake, J. Geophys. Res. vol. 106, no. 26, 467–26, 482

    Google Scholar 

  • SCEC/CME Web Site, http://www.scec.org/cme

  • TeraGrid Website, http://teragrid.org/about/

    Google Scholar 

  • The SDSC Storage Resource Broker, http://www.sdsc.edu/srb/

  • Uemura, A., C.K.J. Watanabe (2004). Visualization of seismic wave data by volume rendering and its application to an interactive query tool, in Proc. PDPTA, pp. 366–372, CSREA Press

    Google Scholar 

  • Weldon, R., K. Scharer, T. Furnal, G. Biasi (2004). Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work. Geol. Seismol. Am. Today, vol. 14, pp. 4–10

    Google Scholar 

  • Wijk, J.J.V., A.C. Telea (2001). Enridged contour maps, in Proc. Conf. Visual., IEEE Computer Society, pp. 69–74

    Google Scholar 

  • Yu, H., K.L. Ma, J. Welling (2004). A parallel visualization pipeline for terascale earthquake simulations, SC04, vol. 6, no. 12, p. 49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cui, Y., Olsen, K., Chourasia, A., Moore, R., Maechling, P., Jordan, T. (2009). The TeraShake Computational Platform for Large-Scale Earthquake Simulations. In: Advances in Geocomputing. Lecture Notes in Earth Sciences, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85879-9_7

Download citation

Publish with us

Policies and ethics