Advertisement

Meandering of Wing-Tip Vortices Interacting with a Cold Jet in the Extended Wake

  • Frank T. Zurheide
  • Matthias Meinke
  • Wolfgang Schröder

Abstract

The spatial development of a vortex wake behind a half wing is simulated up to the extended near field. Results from wind tunnel measurements are used as inflow boundary conditions for an LES of the wake region. An aircraft engine is modeled in the experimental setup, where a cold jet is driven by pressurized air. The engine is mounted in two different positions under the wing model to investigate the influence of the location of the engine jet on the vortex wake. The numerical simulations of the wake are able to predict trajectories and instabilities of the vortex core. A position of the engine towards the root of the wing creates a smaller deflection of the vortex and excites fewer wave modes of the vortex.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, S., Raju, D., Chaturvedi, S., Jha, R.: Modal analysis for a bounded-wave EMP simulator — Part I: effect of test object. IEEE Transactions on Electromagnetic Compatibility 47(1), 171–182 (2005) CrossRefGoogle Scholar
  2. 2.
    Baker, G.R., Barker, S.J., Bofah, K.K., Saffman, P.G.: Laser anemometer measurements of trailing vortices in water. J. Fluid Mech. 65, 325–336 (1974) CrossRefGoogle Scholar
  3. 3.
    Beninati, M.L., Marshall, J.S.: An experimental study of the effect of free-stream turbulence on a trailing vortex. Experiments in Fluids 38, 244–257 (2005).  10.1007/s00348-004-0904-1ELECTR:2 CrossRefGoogle Scholar
  4. 4.
    Berkooz, G., Holmes, P., Lumley, J.L.: The proper orthogonal decomposition in the analysis of turbulent flows. Annual Review of Fluid Mechanics 25, 539–575 (1993) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bristol, R.L., Ortega, J.M., Marcus, P.S.: On cooperative instabilities of parallel vortex pairs. J. Fluid Mech. 517, 331–358 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brunet, S., Garnier, F., Sagaut, P.: Crow instability effects on the exhaust plume mixing and condensation. In: Third International Workshop on Vortex Flows and Related Numerical Methods, European Series in Applied and Industrial Mathematics, vol. 7, pp. 69–79 (1999). URL http://www.emath.fr/proc/Vol.7/
  7. 7.
    Crouch, J.D. Instability and transient growth for two trailing-vortex pairs. J. Fluid Mech. 350, 311–330 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Crow, S.C. Stability theory for a pair of trailing vortices. AIAA J. 8, 2172–2179 (1970) CrossRefGoogle Scholar
  9. 9.
    Devenport, W.J. Rife, M.C. Liapis, S.I. Follin, G.J. The structure and development of a wing-tip vortex. J. Fluid Mech. 312, 67–106 (1996) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fabre, D. Jacquin, L. Stability of a four-vortex aircraft wake model. Phys. Fluids 12(10), 2438–2443 (2000) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Fabre, D. Jacquin, L. Loof, A. Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration. J. Fluid Mech. 451, 319–328 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fares, E., Schröder, W.: Analysis of wakes and wake-jet interaction. In: Notes on Numerical Fluid Mechanics, vol. 84, pp. 57–84 (2003) Google Scholar
  13. 13.
    Feeny, B.F., Kappagantu, R.: On the physical interpretation of proper orthogonal modes in vibrations. Journal of Sound and Vibration 211(4), 607–616 (1998) CrossRefGoogle Scholar
  14. 14.
    Gago, C.F., Brunet, S., Garnier, F.: Numerical Investigation of Turbulent Mixing in a Jet/Wake Vortex Interaction. AIAA J. 40(2), 276–284 (2002) CrossRefGoogle Scholar
  15. 15.
    Gallaire, F., Chomaz, J.M.: Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech. 494, 223–253 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gerz, T., Holzäpfel, F.: Wing-tip vortices, turbulence, and the distribution of emissions. AIAA J. 37(10), 1270–1276 (1999) CrossRefGoogle Scholar
  17. 17.
    Ghosal, S., Moin, P.: The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118, 24–37 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Holzäpfel, F., Gerz, T., Baumann, R.: The turbulent decay of trailing vortex pairs in stably stratified environments. Aerosp. Sci. Technol. 5, 95–108 (2001) zbMATHCrossRefGoogle Scholar
  19. 19.
    Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Gago, C.F.: Wake vortex evolution and decay mechanisms in the atmosphere. In: Proceedings of 3rd ONERA–DLR Aerospace Symposium, p. 10. Paris, France (2001) Google Scholar
  20. 20.
    Holzäpfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F., Gago, C.F.: Analysis of wake vortex decay mechanisms in the atmosphere. Aerosp. Sci. Technol. 7, 263–275 (2003) zbMATHCrossRefGoogle Scholar
  21. 21.
    Huppertz, G., Klaas, M., Schröder, W.: Engine jet/vortex interaction in the near wake of an airfoil. In: AIAA 36th Fluid Dynamics Conference. San Francisco, CA, U.S.A (2006). AIAA-Paper 2006-3747 Google Scholar
  22. 22.
    Huppertz, G., Schröder, W.: Vortex/engine jet interaction in the near wake of a swept wing. In: 77th Annual Meeting of the GAMM. Berlin, Germany (2006) Google Scholar
  23. 23.
    Jacquin, L., Fabre, D., Sipp, D., Theofilis, V., Vollmers, H.: Instability and unsteadiness of aircraft wake vortices. Aerosp. Sci. Technol. 7, 577–593 (2003) CrossRefGoogle Scholar
  24. 24.
    Jacquin, L., Pantano, C.: On the persistence of trailing vortices. J. Fluid Mech. 471, 159–168 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Labbe, O., Maglaras, E., Garnier, F.: Large-eddy simulation of a turbulent jet and wake vortex interaction. Comput. & Fluids 36(4), 772–785 (2007) CrossRefGoogle Scholar
  27. 27.
    Laporte, F., Corjon, A.: Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12(5), 1016–1031 (2000) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Laporte, F., Leweke, T.: Elliptic Instability of Counter-Rotating Vortices: Experiment and Direct Numerical Simulation. AIAA J. 40(12), 2483–2494 (2002) CrossRefGoogle Scholar
  29. 29.
    Le Dizès, S., Laporte, F.: Theoretical predictions for the elliptical instability in a two-vortex flow. J. Fluid Mech. 471, 169–201 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Leweke, T., Williamson, C.H.K.: Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85–119 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Liang, Y.C., Lee, H.P., Lim, S.P., Lin, W.Z., Lee, K.H., Wu, C.G.: Proper orthogonal decomposition and its applications — Part I: Theory. Journal of Sound Vibration 252, 527–544 (2002) CrossRefMathSciNetGoogle Scholar
  32. 32.
    Loiseleux, T., Chomaz, J.M., Huerre, P.: The effect of swirl on jets and wakes: Linear instability of the rankine vortex with axial flow. Physics of Fluids 10(5), 1120–1134 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Lu, G., Lele, S.K.: Inviscid instability of compressible swirling mixing layers. Physics of Fluids 11(2), 450–461 (1999) CrossRefMathSciNetGoogle Scholar
  34. 34.
    Meinke, M., Schulz, C., Rister, T.: LES of spatially developing jets. In: Computation and Visualization of Three-Dimensional Vortical and Turbulent Flows, Notes on Numerical Fluid Mechanics. Vieweg Verlag (1997) Google Scholar
  35. 35.
    Meunier, P., Dizes, S.L., Leweke, T.: Physics of vortex merging. C. R. Physique 6, 431–450 (2005). http://dx.doi.org/10.1016/j.crhy.2005.06.003 CrossRefGoogle Scholar
  36. 36.
    Meunier, P., Leweke, T.: Three-dimensional instability during vortex merging. Phys. Fluids 13(10), 2747–2750 (2001) CrossRefGoogle Scholar
  37. 37.
    Meunier, P., Leweke, T.: Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 124–159 (2005) CrossRefMathSciNetGoogle Scholar
  38. 38.
    Miake-Lye, R., Martinez-Sanchez, M., Brown, R.C., Kolb, C.E.: Plume and wake dynamics, mixing, and chemistry behind a high speed civil transport aircraft. J. Aircraft 30(4), 467–479 (1993) CrossRefGoogle Scholar
  39. 39.
    Özger, E., Schell, I., Jacob, D.: On the Structure and Attenuation of an Aircraft Wake. J. Aircraft 38(5), 878–887 (2001) CrossRefGoogle Scholar
  40. 40.
    Paoli, R., Laporte, F., Cuenot, B., Poinsot, T.: Dynamics and mixing in jet/vortex interactions. Phys. Fluids 15(7), 1843–1860 (2003).  10.1063/1.1575232 CrossRefMathSciNetGoogle Scholar
  41. 41.
    Saudreau, M., Moet, H.: Characterization of Extended Near-Field and Crow Instability in the Far-Field of a Realistic Aircraft Wake. In: P. Neittaanmäki, T. Rossi, S. Korotov, E. Onate, J. Periaux, D. Knörzer (eds.) European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 (2004) Google Scholar
  42. 42.
    Schlichting, H., Truckenbrodt, E.A.: Aerodynamik des Flugzeuges, vol. 2. Springer, Berlin, Heidelberg, New York, Barcelona, Hongkong, London, Mailand, Paris, Singapur, Tokio (2001) Google Scholar
  43. 43.
    Sipp, D.: Weakly nonlinear saturation of short-wave instabilities in a strained Lamb-Oseen vortex. Phys. Fluids 12(7), 1715–1729 (2000) CrossRefMathSciNetGoogle Scholar
  44. 44.
    Spalart, P.R.: Airplane trailing vortices. Annual Review of Fluid Mechanics 30(1), 107–138 (1998) CrossRefMathSciNetGoogle Scholar
  45. 45.
    Stumpf, E.: Untersuchung von 4-Wirbelsystemen zur Minimierung von Wirbelschleppen und ihre Realisierung an Transportflugzeugen. Ph.D. thesis, Aerodyn. Inst., RWTH Aachen (2003) Google Scholar
  46. 46.
    Stumpf, E., Wild, J., Dafa’Alla, A.A., Meese, E.A.: Numerical simulations of the wake vortex near field of high-lift configurations. In: P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux, D. Knörzer (eds.) European Congress on Computational Methods in Applied Sciences an Engineering ECCOMAS 2004. Jyväskylä (2004) Google Scholar
  47. 47.
    Waleffe, F.: On the three-dimensional instability of strained vortices. Phys. Fluids 2(1), 76–80 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Yin, X.Y., Sun, D.J., Wei, M.J., Wu, J.Z.: Absolute and convective instability character of slender viscous vortices. Phys. Fluids 12, 1062–1072 (2000).  10.1063/1.870361 CrossRefMathSciNetGoogle Scholar
  49. 49.
    Zurheide, F., Schröder, W.: Numerical analysis of wing vortices. In: C. Tropea, S. Jakirlic, H. J. Heinemann, R. Henke, H. Hönlinger (eds.) New Results in Numerical and Experimental Fluid Mechanics VI, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 96, pp. 17–25. Springer Berlin, Heidelberg, New York (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Frank T. Zurheide
    • 1
  • Matthias Meinke
    • 1
  • Wolfgang Schröder
    • 1
  1. 1.Institute of AerodynamicsRWTH Aachen UniversityAachenGermany

Personalised recommendations