Fluid-Structure Interaction in Turbine Simulation

  • Felix Lippold
  • Albert Ruprecht


In this article, two examples of fluid-structure interaction (FSI) are examined. Furthermore, the issues of turbulence and the impact of turbulence models on the accuracy of Karman vortices is evaluated. For this purpose, an adaptive turbulence model is described, introduced and validated. For the FSI simulations, a partitioned scheme is introduced and implemented. Since the main application considered here is hydraulic machinery, the issue of added mass effects and unstable coupling is addressed and discussed. The scheme is validated with a benchmark application established recently. Finally, the first results obtained for the FSI coupling of a tidal current turbine runner blade under fluid loads are described. For the simulations, the established in-house CFD-Code FENFLOSS is used. For the coupling, the commercial software MpCCI is applied. ABAQUS and CalculiX are used for the solution of the structural part. Simulations are performed on a cluster and a NEC SX-8 vector computer.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borowski, S., Tiyyagura, S.R., Küster, U.: Matrix assembly without coloring on vector machines. In: Proc. of the Int. Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2006). Crete, Greece (2006) Google Scholar
  2. 2.
    Cebeci, T.: Turbulence models and their applications. Horizons Publishing, Long Beach, CA (2004) Google Scholar
  3. 3.
    Chen, Y.S., Kim, S.W.: Computation of turbulent flows using an extended kε closure model. NASA CR-179204 Google Scholar
  4. 4.
    Donea, J., Huerta, A.: Finite element methods for flow problems. Wiley, Chichester (2003) Google Scholar
  5. 5.
    Farhat, C., Lesoinne, M., le Tallec, P.: Load and motion transfer algorithms for fluid-structure interaction problems with non-matching interfaces. Computer Methods in Applied Mechanics and Engineering 157, 95–114 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ferziger, J.H., Perić, M.: Computational methods for fluid dynamics, 3 edn. Springer (2002) Google Scholar
  7. 7.
    Förster, C.: Robust methods for fluid-structure interaction with stabilised finite elements. Ph.D. thesis, Institut für Baustatik, Universität Stuttgart (2007) Google Scholar
  8. 8.
    Gongwer Azusa, C.A.: A study of vanes singing in water. Transactions of the ASME 74 (1952) Google Scholar
  9. 9.
    Gresho, P.M., Sani, R.L.: Incompressible flow and the finite element method, vol. I. John Wiley & Sons (1999) Google Scholar
  10. 10.
    Helmrich, T.: Simulation instationärer Wirbelstrukturen in hydraulischen Maschinen. Ph.D. thesis, IHS, Universität Stuttgart (2007) Google Scholar
  11. 11.
    Hughes, T.J.R., Liu, W.K., Zimmermann, T.K.: Lagrangian-Eulerian finite element formulation for viscous flows. Comp. Methods in Applied Mech. and Eng. 29, 329–349 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hübner, B., Seidel, U.: Partitioned solution to strongly coupled hydroelastic systems arising in hydro turbine design. In: Proceedings of the 2nd International IAHR Meeting of the Work Group on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems. Timisoara, Romania (2007) Google Scholar
  13. 13.
    Kjellgren, P., Hyvärinen, J.: An arbitrary Langrangian-Eulerian finite element method. Computational Mechanics 21, 81–90 (1998) zbMATHCrossRefGoogle Scholar
  14. 14.
    Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comp. Methods in Applied Mech. Eng. 3 (1974) Google Scholar
  15. 15.
    Lippold, F.: Fluid-structure interaction in an axial fan. HPC-Europa report (2006) Google Scholar
  16. 16.
    Maihoefer, M.: Effiziente Verfahren zur Berechnung dreidimensionaler Stroemungen mit nichtpassenden Gittern. Ph.D. thesis, University of Stuttgart (2002) Google Scholar
  17. 17.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32, 1598–1605 (1994) CrossRefGoogle Scholar
  18. 18.
    Mok, D.P.: Partitionierte Lösungsansätze in der Strukturdynamik und der Fluid-Struktur-Interaktion. Ph.D. thesis, Institut für Baustatik, Universität Stuttgart (2001) Google Scholar
  19. 19.
    Ruprecht, A.: Finite Elemente zur Berechnung dreidimensionaler turbulenter Stroemungen in komplexen Geometrien. Ph.D. thesis, University of Stuttgart (1989) Google Scholar
  20. 20.
    Schlichting, H., Gersten, K.: Boundary layer theory, 8 edn. Springer (2000) Google Scholar
  21. 21.
    Turek, S., Hron, J.: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: H.-J. Bungartz, M. Schäfer (eds.) Fluid-Structure Interaction — Modelling, Simulation, Optimization, Lecture Notes in Computational Science and Engineering, vol. 53, pp.371–385. Springer, Berlin Heidelberg (2006) Google Scholar
  22. 22.
    van der Vorst, H.A.: BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM Journal of Scientific Stat. Computing 13, 631–644 (1992) zbMATHCrossRefGoogle Scholar
  23. 23.
    van der Vorst, H.A.: Recent developments in hybrid CG methods. Proc. High Performance Computing & Networking, München (1994) Google Scholar
  24. 24.
    Willems, W.: Numerische Simulation turbulenter Scheströmungen mit einem Zwei-Skalen Turbulenzmodell. Ph.D. thesis, RWTH Aachen, Shaker Verlag, Aachen (1997) Google Scholar
  25. 25.
    Zienkiewicz, O.C., Taylor, R.L.: The finite element method, vol. I. McGraw-Hill (1989) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Felix Lippold
    • 1
  • Albert Ruprecht
    • 1
  1. 1.Institut für Strömungsmechanik und Hydraulische StrömungsmaschinenUniversität StuttgartStuttgartGermany

Personalised recommendations