Advertisement

A Large Spectrum of Free Oceanic Oscillations

  • Malte Müller

Abstract

An ocean model has been developed to compute a large set of barotropic free oscillations with explicit consideration of dissipative terms and the full ocean loading and self-attraction effect. The Implicitly Restarted Arnoldi Method is utilized to determine these free oscillations. It is a highly efficient approach to solve large scale eigenvalue problem, in particular if the matrix entries are generally nonzero. The mean performance on the SX-8 supercomputer is up to 3.4 TFlops on 512 CPUs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quaterly of Applied Mathematics 9, 17–29, (1951). zbMATHMathSciNetGoogle Scholar
  2. 2.
    Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: Scalapack users’ guide. SIAM (1997) Google Scholar
  3. 3.
    Farrell, W.E.: Deformation of the earth by surface loads. Rev. Geophys. Space Phys. 10, 761–797 (1972) CrossRefGoogle Scholar
  4. 4.
    Francis, O., Mazzega, P.: Global charts of of ocean tide loading effects. J. Geophys. Res. 95, 411–424 (1990) CrossRefGoogle Scholar
  5. 5.
    Gaviño, J.H.R.: Über die Bestimmung von reibungslosen barotropen Eigenschwingungen des Weltozeans mittels der Lanczos-Methode. PhD thesis, University of Hamburg (1981) Google Scholar
  6. 6.
    Golub G., van Loan, C.: Matrix Computations, 2 edn. Johns Hopkins University Press (1989) Google Scholar
  7. 7.
    Gotlib, V.Y., Kagan, B.A.: On the resonance excitation of semidiurnal tides in the world ocean. Fizika atmosfery i okeana 17, 502–512 (1981) Google Scholar
  8. 8.
    Ipsen, I.C.F.: A history of inverse iteration. In: B. Huppert, H. Schneider (eds.) Helmut Wielandt, Mathematische Werke, Mathematical Works, II: Matrix Theory and Analysis, pp. 464–472. Walter de Gruyter, New York (1996) Google Scholar
  9. 9.
    Kowalik, Z.: Modeling of topographically amplified diurnal tides in the nordic seas. J. Phys. Oceanogr. 24, 1717–1731 (1994) CrossRefGoogle Scholar
  10. 10.
    Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards 45, 255–282 (1950). Research Paper 2133 MathSciNetGoogle Scholar
  11. 11.
    Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK user’s guide: Solution of large scale eigenvalue problems by implicitly restarted arnoldi methods. Technical report, Department of Computational and Applied Mathematics, Rice University (1996) Google Scholar
  12. 12.
    Longuet-Higgins, M.S.: The eigenfunctions of laplace’s tidal equations over a sphere. Phil. Trans. Roy. Soc. London A262, 511–581 (1968) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Miller, A.J.: On the barotropic planetary oscillations of the pacific. J. Mar. Res. 47, 569–594 (1989) CrossRefGoogle Scholar
  14. 14.
    Miller, A.J., Lermusiaux, P.F.J., Poulain, P.: A topographic-rossby mode resonance over the iceland-faeroe ridge. J. Phys. Oceanogr. 26, 2735–2747 (1996) CrossRefGoogle Scholar
  15. 15.
    Müller, M.: Barotrope Eigenschwingungen im Globalen Ozean unter Berücksichtigung des vollen Selbstanziehungs- und Auflasteffektes. Master’s thesis, University of Hamburg (2003) Google Scholar
  16. 16.
    Müller, M.: The free oscillations of the world ocean in the period range 8 to 165 hours including the full loading effect. Geophys. Res. Lett. 34 (L05606) (2007) CrossRefGoogle Scholar
  17. 17.
    Müller, M.: Synthesis of forced oscillations, Part 1: Tidal dynamics and the influence of LSA Ocean Modelling. 20, 207–222 (2008) CrossRefGoogle Scholar
  18. 18.
    Platzman, G.W., Curtis, G.A., Hansen, K.S., Slater, R.D.: Normal modes of the world ocean, Part 2: Description of modes in the range 8 to 80 hours. J. Phys. Oceanogr. 11, 579–603 (1981) CrossRefGoogle Scholar
  19. 19.
    Rao, D.B.: Free gravitational oscillations in rotating rectangular basins. J. Fluid Mech. 25, 523–555 (1966) CrossRefGoogle Scholar
  20. 20.
    Ray, R.D.: Ocean self-attraction and loading in numerical tidal models. Mar. Geod. 21, 181–192 (1998) CrossRefGoogle Scholar
  21. 21.
    Saad, Y.: Numerical methods for large eigenvalue problems: theory and algorithms. John Wiley, New York (1992) zbMATHGoogle Scholar
  22. 22.
    Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI — The complete reference vol. 1: The MPI core. MIT Press (1998) Google Scholar
  23. 23.
    Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM Journal on Matrix Analysis and Applications 13, 357–385 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Wielandt, H.: Das Iterationsverfahren bei nicht selbstadjungierten linearen Eigenwertaufgaben. Math. Z. 50, 93–143 (1944) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Zahel, W.: Mathematical modelling of global interaction between ocean tides and earth tides. Phys. Earth Planet. Interior 21, 202–217 (1980) CrossRefGoogle Scholar
  26. 26.
    Zahel, W.: Astronomical tides. In: J. Sündermann (ed.) Numerical Data and Functional Relationships in Science and Technology, vol. 3c of Landolt–Börnstein, chap. 6.4, pp. 83–134. Springer-Verlag (1986) Google Scholar
  27. 27.
    Zahel, W.: Modeling ocean tides with and without assimilating data. J. Geophys. Res. 12, 20379–20391 (1991) CrossRefGoogle Scholar
  28. 28.
    Zahel, W., Müller, M.: The computation of the free barotropic oscillations of a global ocean model including friction and loading effects. Ocean Dynamics 55, 137–161 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Malte Müller
    • 1
  1. 1.Institute of OceanographyHamburgGermany

Personalised recommendations