Advertisement

Understanding Molecular Recognition and Self-Assembly from Large-Scale Numerical Simulations

  • Stephan Blankenburg
  • Wolf Gero Schmidt

Abstract

Nowadays, complex chemical problems such as the origin and mechanism of molecular recognition and self-assembly can be addressed computationally, using high performance resources. This is illustrated in the following, using the adsorption of small amino acids and DNA base molecules on metals as an example. First-principles calculations are used to rationalize the long-range chiral recognition between adenine and phenylglycine adsorbed on Cu(110) [Chen and Richardson, Nature Materials 2, 324 (2003)]. The enantiomeric interaction is traced to substrate-mediated Coulomb repulsion and template effects. The mechanism revealed here (i) shows that the Easson and Stedman model for chiral recognition may include long-range electrostatic interactions and (ii) illustrates the catalytic potential of the substrate for molecular self-assembly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bader, R.F.W.: Atoms in molecules: A quantum theory. Oxford, USA (1990) Google Scholar
  2. 2.
    Blankenburg, S., Schmidt, W.G.: Adsorption of phenylglycine on copper: Density functional calculations. Phys. Rev. B 74, 155419 (2006) CrossRefGoogle Scholar
  3. 3.
    Blankenburg, S., Schmidt, W.G.: Steric effects and chirality in the adsorption of glycine and phenylglycine on Cu(110). Nanotechnology 18, 424030 (2007) CrossRefGoogle Scholar
  4. 4.
    Booth, T.D., Wahnon, D., Wainer, I.W.: Is chiral recognition a three-point process? Chirality 9, 96 (1997) CrossRefGoogle Scholar
  5. 5.
    Chen, Q., Richardson, N.V.: Enantiomeric interactions between nucleic acid bases and amino acids on solid surfaces. Nature Materials 2, 324 (2003) CrossRefGoogle Scholar
  6. 6.
    Di Felice, R. Selloni, A. Adsorption modes of cysteine on Au(111): Thiolate, amino-thiolate, disulfide. J. Chem. Phys. 120, 4906 (2004) CrossRefGoogle Scholar
  7. 7.
    Easson, E.H., Stedman, E.: Studies on the relationship between chemical constitution and physiological action. Biochem. J. 27, 1257 (1933) Google Scholar
  8. 8.
    Ernst, K.H., Kuster, Y., Fasel, R., Müller, M., Ellerbeck, U.: Two-dimensional separation of [7]helicene enantiomers on Cu(111). Chirality 13, 675 (2001) CrossRefGoogle Scholar
  9. 9.
    Hamann, D.R.: H2O hydrogen bonding in density-functional theory. Phys. Rev. B 55, R10,157 (1997) CrossRefGoogle Scholar
  10. 10.
    Hauschild, A., Karki, K., Cowie, B.C.C., Rohlfing, M., Tautz, F.S., Sokolowski, M.: Molecular distortions and chemical bonding of a large π-conjugated molecule on a metal surface. Phys. Rev. Lett. 94, 036106 (2005) CrossRefGoogle Scholar
  11. 11.
    Jones, G., Jenkins, S.J., King, D.A.: Hydrogen bonds at metal surfaces: Universal scaling and quantification of substrate effects. Surf. Sci. 600, L224 (2006) CrossRefGoogle Scholar
  12. 12.
    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  13. 13.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999) CrossRefGoogle Scholar
  14. 14.
    Kühnle, A., Linderoth, T.R., Hammer, B., Besenbacher, F.: Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunneling microscopy. Nature 415, 891 (2002) CrossRefGoogle Scholar
  15. 15.
    Lorenzo, M.O., Baddeley, C.J., Muryn, C., Raval, R.: Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404, 376 (2000) CrossRefGoogle Scholar
  16. 16.
    Lukas, S., Witte, G., Wöll, C.: Novel mechanism for molecular self-assembly on metal substrates: Unidirectional rows of pentacene on Cu(110) produced by a substrate-mediated repulsion. Phys. Rev. Lett. 88, 028,301 (2002) Google Scholar
  17. 17.
    Nilsson, A., Pettersson, L.G.M.: Chemical bonding on surfaces probed by x-ray emission spectroscopy and density functional theory. Surf. Sci. Rep. 55, 49 (2004) CrossRefGoogle Scholar
  18. 18.
    Northrup, J.E., Froyen, S.: Structure of GaAs(001) surfaces: The role of electrostatic interactions. Phys. Rev. B 50, 2015 (1994) CrossRefGoogle Scholar
  19. 19.
    Nyberg, M., Odelius, M., Nilsson, A., Pettersson, L.G.M.: Hydrogen bonding between adsorbed deprotonated glycine molecules on Cu(110). J. Chem. Phys. 119, 12577 (2003) CrossRefGoogle Scholar
  20. 20.
    Ortmann, F., Schmidt, W.G., Bechstedt, F.: Attracted by long-range electron correlation: Adenine on graphite. Phys. Rev. Lett. 95, 186101 (2005) CrossRefGoogle Scholar
  21. 21.
    Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Fiolhais, D.J.S.C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992) CrossRefGoogle Scholar
  22. 22.
    Preuss, M., Schmidt, W.G., Bechstedt, F.: Coulombic amino group-metal bonding: Adsorption of adenine on cu(110). Phys. Rev. Lett. 94, 236102 (2005) CrossRefGoogle Scholar
  23. 23.
    Schmidt, W.G., Seino, K., Preuss, M., Hermann, A., Ortmann, F., Bechstedt, F.: Organic molecule adsorption on solid surfaces: chemical bonding, mutual polarisation and dispersion interaction. Appl. Phys. A 85, 387 (2006) CrossRefGoogle Scholar
  24. 24.
    Thierfelder, C., Hermann, A., Schwerdtfeger, P., Schmidt, W.G.: Strongly bonded water monomers on the ice ih basal plane: Density-functional calculations. Phys. Rev. B 74, 045,422 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stephan Blankenburg
    • 1
  • Wolf Gero Schmidt
    • 1
  1. 1.Lehrstuhl für Theoretische PhysikUniversität PaderbornPaderbornGermany

Personalised recommendations