Hierarchical Modeling of Combustion Processes

  • Ulrich Maas
  • Viatcheslav Bykov
  • Andriy Rybakov
  • Rainer Stauch


Combustion processes are governed by a strong coupling of chemical kinetics, molecular transport processes and flow. Mathematical modeling is complicated by the existence of scaling problems (time-, velocity- and length scales). In order to allow a reliable numerical simulation of practical combustion systems, models have to be devised which do not neglect or over-simplify the underlying physical and chemical processes. In this paper hierarchical modeling concepts are presented which allow the development of realistic and reliable modeling tools based on information from detailed simulations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aouina, Y., Gutheil, E., Maas, U., Riedel, U., Warnatz J.: Mathematical Modeling of Droplet Heating, Vaporization, and Ignition Including Detailed Chemistry. Comb. Sci. Tech. 173, 91–114 (2001) CrossRefGoogle Scholar
  2. 2.
    Bauer, J., Bykov, V., Maas, U.: Implementation of ILDMs based on a representation in generalized coordinates. In: P. Wesseling, E. Onate, J. Periaux (eds.) Proc. European Conference on Computational Fluid Dynamics, Egmond aan Zee (2006) Google Scholar
  3. 3.
    Baum, M.: Direct Numerical Simulation — A tool to study turbulent reacting flows. Annual Reviews of Computational Physics, D. Staufer (ed.), vol. 5, World Scientific Publishing Company (1997) Google Scholar
  4. 4.
    Bird, R., Stewart, W., Lightfoot, E.: Transport Phenomena, Wiley Interscience, New York (1960) Google Scholar
  5. 5.
    Blasenbrey, T., Schmidt, D., Maas, U.: Automatically Simplified Chemical Kinetics and Molecular Transport and its Application in Premixed and Non-Premixed Laminar Flame Calculations. Proc. Comb. Inst. 28, 505–511 (1995) Google Scholar
  6. 6.
    Bykov, V., Maas, U.: Extension of the ILDM method to the domain of slow chemistry. Proc. Comb. Inst. 31(1), 465–472 (2007) CrossRefGoogle Scholar
  7. 7.
    Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifold. Comb. Theory and Modell. 11(6), 839–862 (2008) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, Y., Stårner, S., Masri, A.R.: Further Study of Spray Combustion in a Simple Turbulent Jet Flow. In: Proc. 15th Australasian Fluid Mechanics Conference, Sydney (2004) Google Scholar
  9. 9.
    Cho, S., Yetter, R., Dryer, F.: A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction. J. Comput. Phys. 102, 160–179 (1992) zbMATHCrossRefGoogle Scholar
  10. 10.
    Dopazo, C., O’Brien, E.: An approach to the autoignition of a turbulent mixture. Acta Astronaut 1, 1239–1266 (1974) zbMATHCrossRefGoogle Scholar
  11. 11.
    Ern, A., Giovangigli, V.: Multicomponent Transport Algorithms, Lecture Notes in Physics, Springer, Berlin Heidelberg New York (1994) zbMATHGoogle Scholar
  12. 12.
    Haworth, D., Pope, S.B.: A generalized Langevin model for turbulent flows. Physics of Fluids 29, 387–405 (1986) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hirschfelder, J., Curtiss, C.: Theory of Propagation of Flames. Part I: General Equations. In: Proc. 3rd Symposium (International) on Combustion, Williams and Wilkins, Baltimore (1949) Google Scholar
  14. 14.
    Hirschfelder, J., Curtiss, C.: Molecular Theory of Gases and Liquids. John Wiley & Sons Inc., New York (1964) Google Scholar
  15. 15.
    Juneja, A., Pope, S.B.: A DNS study of turbulent mixing of two passive scalars. Physics of Fluids 8, 2161–2184 (1996) zbMATHCrossRefGoogle Scholar
  16. 16.
    Libby, P., Williams, F.: Turbulent Reacting Flows. Academic Press, New York (1994) zbMATHGoogle Scholar
  17. 17.
    Maas, U.: Coupling of Chemical Reaction with Flow and Molecular Transport. Applications of Mathematics 3, 249–266 (1995) MathSciNetGoogle Scholar
  18. 18.
    Maas, U.: Efficient Numerical Calculation of Intrinsic Low-Dimensional Manifolds in Composition Space. Computing and Visualization in Science 1(2), 69–81 (1997) CrossRefGoogle Scholar
  19. 19.
    Maas, U.: Mathematical Modeling of the Coupling of Chemical Kinetics With Flow and Molecular Transport. Scientific Computing in Chemical Engineering II, Springer (1999) Google Scholar
  20. 20.
    Maas, U., Pope, S.B.: Implementation of Simplified Chemical Kinetics Based on Intrinsic Low-Dimensional Manifolds. Proc. Comb. Inst. 24, 103–112 (1992) Google Scholar
  21. 21.
    Maas, U., Pope, S.B.: Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space. Comb. Flame 88, 239–264 (1992) CrossRefGoogle Scholar
  22. 22.
    Maas, U., Pope, S.B.: Laminar Flame Calculations using Simplified Chemical Kinetics Based on Intrinsic Low-Dimensional Manifolds. Proc. Comb. Inst. 25, 1349–1356 (1994) Google Scholar
  23. 23.
    Maas, U., Thévenin, D.: Correlation Analysis of Direct Numerical Simulation Data of Turbulent Non-Premixed Flames. Proc. Comb. Inst. 27, 1183–1189 (1998) Google Scholar
  24. 24.
    Merci, B., Naud, B.D., Roekaerts, D., Maas, U.: Joint Scalar versus Joint Velocity-Scalar PDF Simulations of Bluff-Body Stabilised Flames with REDIM. Flow, Turbulence and Combustion, in print (2008) Google Scholar
  25. 25.
    Nafe, J., Maas, U.: A General Algorithm for Improving ILDMs. Comb. Theory and Modell. 6(4), 697–709 (2002) CrossRefGoogle Scholar
  26. 26.
    Peters, N.: Turbulent Combustion. MIT Press, Cambridge (2000) zbMATHGoogle Scholar
  27. 27.
    Poinsot, T., Candel, S., Trouve, A.: Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci. 21, 531–576 (1996) CrossRefGoogle Scholar
  28. 28.
    Poinsot, T., Haworth, D., Bruneaux, G.: A law of the wall model for turbulent premixed combustion. Comb. Flame 95, 118–133 (1993) CrossRefGoogle Scholar
  29. 29.
    Rybakov, A., Maas, U.: In preparation (2008) Google Scholar
  30. 30.
    Stauch, R., Maas, U.: The auto-ignition of single n-heptane/iso-octane droplets. Int. J. Heat and Mass Transfer 50, 3047–3053 (2007) zbMATHCrossRefGoogle Scholar
  31. 31.
    Stauch, R., Maas, U.: The ignition of methanol droplets in a laminar convective environment. Comb. Flame 153, 45–57 (2008) Google Scholar
  32. 32.
    Taylor, G.: Diffusion by continuous movement. Proc. Lond. Math. Soc. 20, 196–212 (1921) CrossRefGoogle Scholar
  33. 33.
    Tsai, W., Schmidt, D., Maas, U.: Direct Numerical Simulations of Spark Ignition of H2/Air-Mixture in a Turbulent Flow. In: E. Krause, W. Jäger (eds.) Proc. High Performance Computing in Science and Engineering 2000, Springer-Verlag Berlin Heidelberg, 433–441 (2001) Google Scholar
  34. 34.
    Warnatz, J.: Resolution of Gas Phase and Surface Chemistry into Elementary Reactions. Proc. Comb. Inst. 24, 553–579 (1993) Google Scholar
  35. 35.
    Warnatz, J., Maas, U., Dibble, R.: Combustion. 4 edn., Springer-Verlag, Berlin Heidelberg (2004) Google Scholar
  36. 36.
    Zhu, M., Bray, K.N.C., Rumberg, O., Rogg, B.: PDF Transport Equations for Two-Phase Reactive Flows and Sprays. Comb. Flame 122, 327–338 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ulrich Maas
    • 1
  • Viatcheslav Bykov
    • 1
  • Andriy Rybakov
    • 1
  • Rainer Stauch
    • 1
  1. 1.Institut für Technische ThermodynamikUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations