Skip to main content

Learning Accurate Temporal Relations from User Actions in Intelligent Environments

  • Conference paper

Part of the Advances in Soft Computing book series (AINSC,volume 51)

Summary

Ambient Intelligence environments depend on their capability to learn user’s preferences and typical behavior. In this paper we present an algorithm that taking as starting point information collected by sensors finds out accurate temporal relations among actions carried out by the user.

Keywords

  • Ambient Intelligence
  • Context Aware Computing
  • Learning behavioral patterns
  • Temporal relations

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-85867-6_32
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-85867-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.: Towards a general theory of action and time. Artificial Intelligence 23, 123–154 (1984)

    CrossRef  MATH  Google Scholar 

  2. Augusto, J.C.: Ambient Intelligence: the Confluence of Ubiquitous/Pervasive Computing and Artificial Intelligence. In: Intelligent Computing Everywhere, pp. 213–234. Springer, London (2007)

    CrossRef  Google Scholar 

  3. Augusto, J.C., Cook, D.J.: Ambient intelligence: applications in society and opportunities for ai. In: 20th International Joint Conference on Artificial Intelligence (IJCAI 2007) (2007)

    Google Scholar 

  4. Augusto, J.C., Nugent, C.D.: The use of temporal reasoning and management of complex events in smart homes (2004)

    Google Scholar 

  5. Aztiria, A., Augusto, J.C., Izaguirre, A.: Spatial and temporal aspects for pattern representation and discovery in intelligent environments. In: Workshop on Spatial and Temporal Reasoning at 18th European Conference on Artificial Intelligence (ECAI 2008) (to published, 2008)

    Google Scholar 

  6. Begg, R., Hassan, R.: Artificial neural networks in smart homes. In: Designing Smart Homes. The Role of Artificial Intelligence, pp. 146–164. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  7. Cook, D.J., Das, S.K.: Smart Environments: Technology, Protocols and Applications. Wiley-Interscience, Chichester (2005)

    Google Scholar 

  8. Cook, D.J., Huber, M., Gopalratnam, K., Youngblood, M.: Learning to control a smart home environment. In: Innovative Applications of Artificial Intelligence (2003)

    Google Scholar 

  9. Le Gal, C., Martin, J., Lux, A., Crowley, J.L.: Smartoffice: Design of an intelligent environment. IEEE Intelligent Systems 16(4), 60–66 (2001)

    CrossRef  Google Scholar 

  10. Hagras, H., Callaghan, V., Colley, M., Clarke, G., Pounds-Cornish, A., Duman, H.: Creating an ambient-intelligence environment using embedded agents. IEEE Intelligent Systems 19(6), 12–20 (2004)

    CrossRef  Google Scholar 

  11. Jakkula, V.R., Cook, D.J.: Using temporal relations in smart environment data for activity prediction. In: Proceedings of the 24th International Conference on Machine Learning (2007)

    Google Scholar 

  12. Muller, M.E.: Can user models be learned at all? inherent problems in machine learning for user modelling. In: Knowledge Engineering Review, vol. 19, pp. 61–88. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  13. Sadeh, N.M., Gandom, F.L., Kwon, O.B.: Ambient intelligence: The mycampus experience. Technical Report CMU-ISRI-05-123, ISRI (2005)

    Google Scholar 

  14. Weiser, M.: The computer for the 21st century. Scientific American 265(3), 94–104 (1991)

    CrossRef  Google Scholar 

  15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  16. Youngblood, G.M., Cook, D.J., Holder, L.B.: Managing adaptive versatile environments. In: IEEE International Conference on Pervasive Computing and Communications (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aztiria, A., Augusto, J.C., Izaguirre, A., Cook, D. (2009). Learning Accurate Temporal Relations from User Actions in Intelligent Environments. In: Corchado, J.M., Tapia, D.I., Bravo, J. (eds) 3rd Symposium of Ubiquitous Computing and Ambient Intelligence 2008. Advances in Soft Computing, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85867-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85867-6_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85866-9

  • Online ISBN: 978-3-540-85867-6

  • eBook Packages: EngineeringEngineering (R0)