Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 50))

Summary

In recent work we have developed an online algorithm selection technique, in which a model of algorithm performance is learned incrementally while being used. The resulting exploration-exploitation trade-off is solved as a bandit problem. The candidate solvers are run in parallel on a single machine, as an algorithm portfolio, and computation time is shared among them according to their expected performances. In this paper, we extend our technique to the more interesting and practical case of multiple CPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramson, D., Giddy, J., Kotler, L.: High performance parametric modeling with Nimrod/G: Killer application for the global grid? In: Proceedings of the 14th International Parallel & Distributed Processing Symposium (IPDPS 2000), Cancun, Mexico, May 1-5, 2000, pp. 520–528 (2000)

    Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cesa-Bianchi, N., Mansour, Y., Stoltz, G.: Improved second-order bounds for prediction with expert advice. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 217–232. Springer, Heidelberg (2005)

    Google Scholar 

  4. Finkelstein, L., Markovitch, S., Rivlin, E.: Optimal schedules for parallelizing anytime algorithms: the case of independent processes. In: Eighteenth national conference on Artificial intelligence, pp. 719–724. AAAI Press, Menlo Park (2002)

    Google Scholar 

  5. Finkelstein, L., Markovitch, S., Rivlin, E.: Optimal schedules for parallelizing anytime algorithms: The case of shared resources. Journal of Artificial Intelligence Research 19, 73–138 (2003)

    MATH  MathSciNet  Google Scholar 

  6. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. The International Journal of Supercomputer Applications and High Performance Computing 11(2), 115–128 (1997)

    Article  Google Scholar 

  7. Fürnkranz, J.: On-line bibliography on meta-learning, EU ESPRIT METAL Project (26.357): A Meta-Learning Assistant for Providing User Support in Machine Learning Mining (2001)

    Google Scholar 

  8. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Annals of Mathematics and Artificial Intelligence 47(3–4), 295–328 (2006); AI&MATH 2006 Special Issue

    MATH  MathSciNet  Google Scholar 

  9. Gagliolo, M., Schmidhuber, J.: Algorithm selection as a bandit problem with unbounded losses. Technical Report IDSIA-07-08, IDSIA (2008)

    Google Scholar 

  10. Gent, I., Walsh, T.: The search for satisfaction. Technical report, Dept. of Computer Science, University of Strathclyde (1999)

    Google Scholar 

  11. Gent, I., Hoos, H.H., Prosser, P., Walsh, T.: Morphing: Combining structure and randomness. In: Proc. of AAAI 1999, pp. 654–660 (1999)

    Google Scholar 

  12. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1–2), 43–62 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. Autom. Reason. 24(1-2), 67–100 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gomes, C.P., Selman, B., Kautz, H.: Boosting combinatorial search through randomization. In: AAAI 1998/IAAI 1998, USA, pp. 431–437. AAAI Press, Menlo Park (1998)

    Google Scholar 

  15. Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. In: Gent, I.P., et al. (eds.) SAT 2000, pp. 283–292 (2000), http://www.satlib.org

  16. Huberman, B.A., Lukose, R.M., Hogg, T.: An economic approach to hard computational problems. Science 275, 51–54 (1997)

    Article  Google Scholar 

  17. Li, C.M., Huang, W.: Diversification and determinism in local search for satisfiability. In: SAT 2005, pp. 158–172. Springer, Heidelberg (2005)

    Google Scholar 

  18. Pautasso, C., Bausch, W., Alonso, G.: Autonomic computing for virtual laboratories (2006)

    Google Scholar 

  19. Rice, J.R.: The algorithm selection problem. In: Rubinoff, M., Yovits, M.C. (eds.) Advances in computers, vol. 15, pp. 65–118. Academic Press, New York (1976)

    Google Scholar 

  20. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  21. Wichert, L., Wilke, R.A.: Application of a simple nonparametric conditional quantile function estimator in unemployment duration analysis. Technical Report ZEW Discussion Paper No. 05-67, Centre for European Economic Research (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juan M. Corchado Sara Rodríguez James Llinas José M. Molina

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gagliolo, M., Schmidhuber, J. (2009). Towards Distributed Algorithm Portfolios. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds) International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008). Advances in Soft Computing, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85863-8_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85863-8_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85862-1

  • Online ISBN: 978-3-540-85863-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics