Skip to main content

Electrically Driven Single Quantum Dot Emitter Operating at Room Temperature

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 48))

  • 2040 Accesses

Abstract

We present both optically and electrically driven room temperature emission from single CdSe quantum dots, realized by self-organized epitaxial growth. A structure design that embeds the CdSe quantum dots into ZnSSe/MgS barriers results in high carrier confinement and exceptionally large quantum efficiencies at room temperature. Microphotoluminescence with a spatial resolution of 200 nm exhibits single dot emission that remains visible up to 300 K. When integrating these quantum dots into p-i-n diode structures, an electrically driven single dot emitter with pronounced room temperature emission is realized. The linewidth of the single dot emission increases with temperature due to exciton-phonon interaction and reaches 26 meV at 300 K. This value is only slightly larger than the biexcitonic binding energy, opening a way to solid state single photon emitters operating at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Michler,A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E.Hu, and A. Imamoglu, Science 290, 2282 (2000)

    ADS  Google Scholar 

  2. E. Waks, K. Inoue, C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, Nature 420, 762 (2002)

    Article  ADS  Google Scholar 

  3. M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, Appl. Phys. Lett. 84, 648 (2004)

    Article  ADS  Google Scholar 

  4. M. B. Ward, O. Z. Karimov, D. C. Unitt, Z. L. Yuan, P. See, D. G. Gevaux, A. J. Shields, P. Atkinson, and D. A. Ritchie, Appl. Phys. Lett. 86, 201111 (2005)

    Article  ADS  Google Scholar 

  5. S. Kiravittaya, M. Benyoucef, R. Zapf-Gottwick, A. Rastelli, and O. G. Schmidt, Appl. Phys. Lett. 89, 233102 (2006)

    Article  ADS  Google Scholar 

  6. P. Ester, L. Lackmann, S. M. de Vasconcellos, M. C. Hübner, A. Zrenner, M. Bichler, Appl. Phys. Lett. 91, 111110 (2007)

    Article  ADS  Google Scholar 

  7. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, Nature Phot. 1, 704 (2007)

    Article  ADS  Google Scholar 

  8. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, and M. Pepper, Science 295, 102 (2002)

    Article  ADS  Google Scholar 

  9. R. Schmidt, U. Scholz, M. Vitzethum, R. Fix, C. Metzner, P. Kailuweit, D. Reuter, A. Wieck, M. C. Hübner, S. Stufler, A. Zrenner, S. Malzer, and G. H. Döhler, Appl. Phys. Lett. 88, 121115 (2006)

    Article  ADS  Google Scholar 

  10. A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. A. Haisler, A. I. Toropov, A. K. Bakarov, and A. K. Kalagin, Electron. Lett. 42, 774 (2006)

    Article  Google Scholar 

  11. K. Matsuda, K. Ikeda, T. Saiki, H. Tsuchiya, H. Saito, and K. Nishi, Phys. Rev. B 63, 121304 (2001)

    Article  ADS  Google Scholar 

  12. M. Bayer and A. Forchel, Phys. Rev. B 65, 041308 (2002)

    Article  ADS  Google Scholar 

  13. A. Polimeni, A. Patanè, M. Henini, L. Eaves, and P. C. Main, Phys. Rev. B 59, 5064 (1999)

    Article  ADS  Google Scholar 

  14. P. Michler, A. Imamoglu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, Nature 406, 968, (2000)

    Article  ADS  Google Scholar 

  15. F. Gindele, K. Hild, W. Langbein, and U. Woggon, Phys. Rev. B 60, R2157 (1999)

    Article  ADS  Google Scholar 

  16. K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, Appl. Phys. Lett. 81, 2920 (2002)

    Article  ADS  Google Scholar 

  17. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, Nat. Mater. 5, 887 (2006)

    Article  ADS  Google Scholar 

  18. E. Wu, J. R. Rabeau, G. Roger, F. Treussart, H. Zeng, P. Grangier, S. Prawer and J.-F. Roch, New J. Phys. 9, 434 (2007)

    Article  ADS  Google Scholar 

  19. H. Huang, A. Dorn, V. Bulovica, and M. G. Bawendi, Appl. Phys. Lett. 90, 023110 (2007)

    Article  ADS  Google Scholar 

  20. C. Bradford, B. Urbaszek, M. Funato, A. Balocchi, T. C. M. Graham, E. J. McGhee, R. J. Warburton, K. A. Prior, B. Cavenett, J. Cryst. Growth 251, 581 (2003)

    Article  ADS  Google Scholar 

  21. A. Gust, C. Kruse, K. Sebald, H. Lohmeyer, J. Gutowski, and D. Hommel, Phys. Stat. Sol. C 3, 767 (2006)

    Article  Google Scholar 

  22. T. Passow, H. Heinke, T. Schmidt, J. Falta, A. Stockmann, H. Selke, P. L. Ryder, K. Leonardi, and D. Hommel, Phys. Rev. B 64, 193311 (2001)

    Article  ADS  Google Scholar 

  23. M. Funato, K. Omae, Y. Kawakami, Sg. Fujita, C. Bradford, A. Balocchi, K. A. Prior, and B. C. Cavenett, Phys. Rev. B 73, 245308 (2006)

    Article  ADS  Google Scholar 

  24. K. Shahzad, D. J. Olego, and C. G. Van de Walle, Phys. Rev. B 38, 1417 (1988)

    Article  ADS  Google Scholar 

  25. J. Feldmann, G. Peter, E. O. Göbel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott, Phys. Rev. Lett. 59, 2337 (1987)

    Article  ADS  Google Scholar 

  26. J. Seufert, R. Weigand, G. Bacher, T. Kümmell, A. Forchel, K. Leonardi, and D. Hommel, Appl. Phys. Lett. 76, 1872 (2000)

    Article  ADS  Google Scholar 

  27. J. C. Kim, H. Rho, L. M. Smith, H. E. Jackson, S. Lee, M. Dobrowolska, and J. K. Furdyna, Appl. Phys. Lett. 75, 214 (1999)

    Article  ADS  Google Scholar 

  28. T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, and H. Henneberger, Phys. Rev. Lett. 86, 3172 (2001)

    Article  ADS  Google Scholar 

  29. R. Arians, T. Kümmell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, Physica E 40, 1938 (2008)

    Article  ADS  Google Scholar 

  30. L. Besombes, K. Kheng, L. Marsal, and H. Mariette, Phys. Rev. B 63, 155307 (2001)

    Article  ADS  Google Scholar 

  31. S. Moehl, F. Tinjod, K. Kheng, and H. Mariette, Phys. Rev. B 69, 245318 (2004)

    Article  ADS  Google Scholar 

  32. R. Arians, T. Kümmell, G. Bacher, A. Gust, C. Kruse, and D. Hommel, Appl. Phys. Lett. 90, 101114 (2007)

    Article  ADS  Google Scholar 

  33. A. Gust, C. Kruse, and D. Hommel, J. Cryst. Growth 301–302, 789 (2007)

    Article  Google Scholar 

  34. L. Malikova, W. Krystek, F. H. Pollak, N. Dai, A. Cavus, and M. C. Tamargo, Phys. Rev. B 54, 1819 (1996)

    Article  ADS  Google Scholar 

  35. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 84, 2513 (2000)

    Article  ADS  Google Scholar 

  36. V. D. Kulakovskii, G. Bacher, R. Weigand, T. Kümmell, A. Forchel, E. Borovitskaya, K. Leonardi, and D. Hommel, Phys. Rev. Lett. 82, 1780 (1999)

    Article  ADS  Google Scholar 

  37. G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, Phys. Rev. Lett. 83, 4417 (1999)

    Article  ADS  Google Scholar 

  38. G. Chen, T. H. Stievater, E. T. Batteh, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, Phys. Rev. Lett. 88, 117901 (2002)

    Article  ADS  Google Scholar 

  39. M. Bayer, T. Gutbrod, A. Forchel, V. D. Kulakovskii, A. Gorbunov, M. Michel, R. Steffen, and K. H. Wang, Phys. Rev. B 58, 4740 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kümmell, T. et al. (2009). Electrically Driven Single Quantum Dot Emitter Operating at Room Temperature. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85859-1_6

Download citation

Publish with us

Policies and ethics