Microstructure Tomography – An Essential Tool to Understand 3D Microstructures and Degradation Effects

  • Alexandra Velichko
  • Frank Mücklich
Part of the Advances in Solid State Physics book series (ASSP, volume 48)


In materials science the 3D morphology of the structure is the key to understand the relationships between the manufacturing parameters and the properties of the material. The question is at which conditions two-dimensional characterization and the application of the stereological relations can provide sufficient information and when 3D analysis is indispensible or offers additional insights. Correct description of the 3D grain (particle, pore, object, etc.) size distribution is one of the most important requirements for the microstructure characterization. Taking this problem as an example it will be shown for which grain shapes 2D image analysis with stereological estimates delivers reliable results for the 3D situation and when the microstructural tomography is absolutely necessary. The problem will be discussed assuming grain shapes of different complexity (sphere – equiaxial polyhedra – non-equiaxial polyhedra – non-convex grain shapes).

It will be shown that the 3D characterization of non-convex, irregular and interconnected grains is absolutely indispensable in order to quantify spatial parameters, like connectivity or particles density. Growth mechanisms will be characterized using euclidic distance transformation. A detailed 3D image analysis and simulations enable the comprehensive quantitative evaluation of local microstructure degradation effects.


Cast Iron Grain Shape Graphite Particle Spheroidal Graphite Stereological Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Mücklich, J. Ohser, G. Schneider: Z. Metallkd. 88, 27–32 (1997)Google Scholar
  2. 2.
    J. Ohser, F. Mücklich: Statistical Analysis of Microstructures in Materials Science (John Willey and Sons, England, 2000)zbMATHGoogle Scholar
  3. 3.
    C. Lautensack, T. Sych: Image Anal Stereol. 25, 87–93 (2006)Google Scholar
  4. 4.
    A. Velichko, C. Holzapfel, F. Mücklich: Adv. Eng. Mat. 9, 39–45 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Hadwiger: Vorlesungen über Inhalt, Oberfläche, und Isoperimetrie, (Springer Verlag, Berlin, 1957)zbMATHGoogle Scholar
  6. 6.
    J.C. Russ, R.T. Dehoff: Practical Stereology, (Kluwer Academic/Plenum Publishers, New York, 2000)Google Scholar
  7. 7.
    H. Schumann, H. Oettel: Metallographie, 14th Ed. (Wiley-VCH Weinheim, 2005)Google Scholar
  8. 8.
    G. Herzer: IEEE Trans. Magn. 26, 1397–1402 (1990)CrossRefADSGoogle Scholar
  9. 9.
    S.D. Wicksell: Biometrica. 17/18, 84–89, 152–172 (1925/26)Google Scholar
  10. 10.
    J. Ohser, F. Mücklich: Adv. Appl. Prob. 27, 384–396 (1995)zbMATHCrossRefGoogle Scholar
  11. 11.
    F. Mücklich, J. Ohser, S. Blank, D. Katrakova, G. Petzow: Z. Metallkud. 90, 8, 557–561 (1999)Google Scholar
  12. 12.
    F. Lasagni, A. Lasagni, E. Marks, C. Holzapfel, F. Mücklich, H.P. Degischer: Acta Mat. 55, 3875–3882 (2007)CrossRefGoogle Scholar
  13. 13.
    D.D. Double, A. Hellawell: Growth structure of various forms of graphite in The Metallurgy of Cast Iron, B. Lux, I. Minkoff, F. Mollard (Eds.), Georgi Publ. St Saphorin (1975), pp. 509–525Google Scholar
  14. 14.
    A. Velichko, C. Holzapfel, A. Siefers, K. Schladitz, F. Mücklich: Acta Mater. 56, 1981–1990 (2008)CrossRefGoogle Scholar
  15. 15.
    F. Lasagni, A. Lasagni, M. Engstler, H.P. Degischer, F. Mücklich: Adv. Eng. Mat. 10, 62–66 (2008)CrossRefGoogle Scholar
  16. 16.
    J. Konrad, S. Zaefferer, D. Raabe: Acta Mater. 54, 5, 1369–1380 (2006)CrossRefGoogle Scholar
  17. 17.
    N. Jeanvoine, C. Holzapfel, F. Soldera, F. Mücklich: Pract. Metallography 43, 107–119 (2006)Google Scholar
  18. 18.
    C. Holzapfel, W. Schäf, M. Marx, H. Vehoff, F. Mücklich: Scripta Mat. 56, 697–700 (2007)CrossRefGoogle Scholar
  19. 19.
    L. Weber, J. Dorn, A. Mortensen: Acta Mater. 51, 3199–3211 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alexandra Velichko
    • 1
  • Frank Mücklich
    • 2
  1. 1.Functional Materials Saarland UniversityGermany 151150
  2. 2.Functional Materials Saarland UniversityGermany 151150

Personalised recommendations