Skip to main content

Spin Dynamics in High-Mobility Two-Dimensional Electron Systems

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 48))

Abstract

Understanding the spin dynamics in semiconductor heterostructures ishighly important for future semiconductor spintronic devices. In high-mobility two-dimensional electron systems (2DES), the spin lifetime strongly depends on the initial degree of spin polarization due to the electron–electron interaction. The Hartree-Fock (HF) term of the Coulomb interaction acts like an effective out-of-plane magnetic field and thus reduces the spin-flip rate. By time-resolved Faraday rotation (TRFR) techniques, we demonstrate that the spin lifetime is increased by an order of magnitude as the initial spin polarization degree is raised from the low-polarization limit to several percent. We perform control experiments to decouple the excitation density in the sample from the spin polarization degree and investigate the interplay of the internal HF field and an external perpendicular magnetic field. The lifetime of spins oriented in the plane of a [001]-grown 2DES is strongly anisotropic if the Rashba and Dresselhaus spin-orbit fields are of the same order of magnitude. This anisotropy, which stems from the interference of the Rashba and the Dresselhaus spin-orbit fields, is highly density-dependent: as the electron density is increased, the kubic Dresselhaus term becomes dominant und reduces the anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. D. Awschalom, D. Loss, and N. Samarth, eds., Semiconductor Spintronics and Quantum Computation, Nanoscience and Technology (Springer, Berlin, 2002), and references therein.

    Google Scholar 

  2. I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004), and references therein.

    Article  ADS  Google Scholar 

  3. J. Fabian, A. Matos-Abiague, C. Ertler, Peter Stano, and I. Zutic, Acta Physica Slovaca 57, 565 (2007), and references therein.

    Article  ADS  Google Scholar 

  4. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).

    Article  ADS  Google Scholar 

  5. J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).

    Article  ADS  Google Scholar 

  6. J. M. Kikkawa, I. P. Smorchkova, N. Samarth, and D. D. Awschalom, Science 277, 1284 (1997).

    Article  Google Scholar 

  7. S. A. Crooker, M. Furis, X. Lou, C. Adelmann, D. L. Smith, C. J. Palmstrøm, and P. A. Crowell, Science 309, 2191 (2005).

    Article  ADS  Google Scholar 

  8. J. M. Kikkawa and D. D. Awschalom, Nature 397, 139 (1999).

    Article  ADS  Google Scholar 

  9. N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D. Awschalom, Appl. Phys. Lett. 91, 062109 (2007).

    Article  ADS  Google Scholar 

  10. M. A. Brand, A. Malinowski, O. Z. Karimov, P. A. Marsden, R. T. Harley, A. J. Shields, D. Sanvitto, D. A. Ritchie, and M. Y. Simmons, Phys. Rev. Lett. 89, 236601 (2002).

    Article  ADS  Google Scholar 

  11. W. J. H. Leyland, G. H. John, R. T. Harley, M. M. Glazov, E. L. Ivchenko, D. A. Ritchie, I. Farrer, A. J. Shields, and M. Henini, Phys. Rev. B 75, 165309 (2007).

    Article  ADS  Google Scholar 

  12. Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999).

    Article  ADS  Google Scholar 

  13. M. W. Wu and M. Kuwata-Gonokami, Solid State Commun. 121, 509 (2002).

    Article  ADS  Google Scholar 

  14. S. Döhrmann, D. Hägele, J. Rudolph, M. Bichler, D. Schuh, and M. Oestreich, Phys. Rev. Lett. 93, 147405 (2004).

    Article  ADS  Google Scholar 

  15. O. Z. Karimov, G. H. John, R. T. Harley, W. H. Lau, M. E. Flatté, M. Henini, and R. Airey, Phys. Rev. Lett. 91, 246601 (2003).

    Article  ADS  Google Scholar 

  16. M. M. Glazov and E. L. Ivchenko, JETP Lett. 75, 403 (2002).

    Article  ADS  Google Scholar 

  17. M. Q. Weng and M. W. Wu, J. Appl. Phys. 93, 410 (2003).

    Article  ADS  Google Scholar 

  18. M. Q. Weng and M. W. Wu, Phys. Rev. B 68, 075312 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Q. Weng, M. W. Wu, and L. Jiang, Phys. Rev. B 69, 245320 (2004).

    Article  ADS  Google Scholar 

  20. J. Zhou, J. L. Cheng, and M. W. Wu, Phys. Rev. B 75, 045305 (2007).

    Article  ADS  Google Scholar 

  21. M. Q. Weng and M. W. Wu, Phys. Rev. B 69, 195318 (2004).

    Article  ADS  Google Scholar 

  22. F. Meier and B. P. Zakharchenya, eds., Optical Orientation (Elsevier, Amsterdam, 1984).

    MATH  Google Scholar 

  23. B. Dareys, X. Marie, T. Amand, J. Barrau, Y. Shekun, I. Razdobreev, and R. Planel, Superlattices and Microstructures 13, 353 (1993).

    Article  ADS  Google Scholar 

  24. S. Pfalz, R. Winkler, T. Nowitzki, D. Reuter, A. D. Wieck, D. Hägele, and M. Oestreich, Phys. Rev. B 71, 165305 (2005).

    Article  ADS  Google Scholar 

  25. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  MATH  ADS  Google Scholar 

  26. Y. A. Bychkov and E. I. Rashba, Pis’ma Zh. Éksp. Teor. Fiz. 39, 66 (1984) [Sov. Phys. JEPT Lett. 39 78 (1984)].

    Google Scholar 

  27. M. I. D’yakonov and V. I. Perel’, Zh. Éksp. Teor. Fiz. 60, 1954 (1971) [Sov. Phys. JEPT 33, 1053 (1971)].

    Google Scholar 

  28. N. S. Averkiev and L. E. Golub, Phys. Rev. B 60, 15582 (1999).

    Article  ADS  Google Scholar 

  29. N. S. Averkiev, L. E. Golub, A. S. Gurevich, V. P. Evtikhiev, V. P. Kochereshko, A. V. Platonov, A. S. Shkolnik, and Yu. P. Efimov, Phys. Rev. B 74, 033305 (2006).

    Article  ADS  Google Scholar 

  30. B. Liu, H. Zhao, J. Wang, L. Liu, W. Wang, D. Chen, and H. Zhu, Appl. Phys. Lett. 90, 112111 (2007).

    Article  ADS  Google Scholar 

  31. D. Stich, T. Korn, R. Schulz, D. Schuh, W. Wegscheider, and C. Schüller, Physica E 40, 1545 (2008).

    Article  ADS  Google Scholar 

  32. D. Stich, J. Zhou, T. Korn, R. Schulz, D. Schuh, W. Wegscheider, M. W. Wu, and C. Schüller, Phys. Rev. Lett. 98, 176401 (2007).

    Article  ADS  Google Scholar 

  33. D. Stich, J. Zhou, T. Korn, R. Schuh, D. Schuh, W. Wegscheider, M. W. Wu, and C. Schüller, Phys. Rev. B 76 205301 (2007).

    Article  ADS  Google Scholar 

  34. D. Stich, J. H. Jiang, T. Korn, R. Schuh, D. Schuh, W. Wegscheider, M. W. Wu, and C. Schüller, Phys. Rev. B 76 073309 (2007).

    Article  ADS  Google Scholar 

  35. T. Korn, D. Stich, R. Schulz, D. Schuh, W. Wegscheider, and C. Schüller, Physica E 40, 1542 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korn, T., Stich, D., Schulz, R., Schuh, D., Wegscheider, W., Schüller, C. (2009). Spin Dynamics in High-Mobility Two-Dimensional Electron Systems. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85859-1_12

Download citation

Publish with us

Policies and ethics