Privacy Preserving Data Mining within Anonymous Credential Systems

  • Aggelos Kiayias
  • Shouhuai Xu
  • Moti Yung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5229)


Regular (non-private) data mining can be applied to manage and utilize accumulated transaction data. For example, the accumulated relative service time per user per month can be calculated given individual transaction data from which the user compliance with a service agreement can be determined and possibly billing can be processed. Nevertheless, due to user privacy concerns, cryptographic research developed transactions based on unlinkable anonymous credentials. Given the nature of anonymous credentials the ease of managing accumulated data (e.g., per user) is lost. To restore the possibility of management and accumulation of data it seems that a suitable form of privacy preserving data mining is needed. Indeed, privacy preserving data mining methods have been suggested for various protocols and interactions where individual data can be contributed in an encrypted form, but not within the context of anonymous credentials. Given our motivation we suggest a new notion of performing “privacy preserving data mining within the context of anonymous cryptographic credential systems,” so as to protect both the privacy of individually contributed data and the identity of their sources while revealing only what is needed. To instantiate our approach we focus on a primitive we call “data mining group signatures” (DMGS), where it is possible for a set of authorities to employ distributed quorum control for conducting privacy preserving data mining operations on a batch of transactions while preserving maximum possible anonymity. We define and model the new primitive and its security goals, we then present a construction and finally show its privacy and security properties. Along the way we build a methodology that safely combines multi-server protocols as sub-procedures in a more general setting.


Random Oracle Public Input Mining Server Group Signature Scheme Anonymous Credential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the k th-ranked element. In: Cachin and Camenisch [5], pp.40–55Google Scholar
  2. 2.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) Advances in Cryptology – EUROCRYPT 2003, Warsaw, Poland. LNCS, vol. 2656, Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Cachin, C., Camenisch, J. (eds.): Advances in Cryptology - EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic Techniques, nterlaken, Switzerland, May 2-6, 2004. LNCS, vol. 3027. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  6. 6.
    Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to win the clonewars: efficient periodic n-times anonymous authentication. In: Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communications Security, pp. 201–210. ACM, New York (2006)Google Scholar
  7. 7.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Chaum, D.: Blind signatures for untraceable payments. In: Crypto (1982)Google Scholar
  9. 9.
    Chaum, D.: Security without identification: Transactions systems to make big brother obsolete. C. ACM 28(10), 1030–1044 (1985)CrossRefGoogle Scholar
  10. 10.
    Chaum, D.: Showing credentials without identification. In: Pichler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 241–244. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  11. 11.
    Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403. Springer, Heidelberg (1990)Google Scholar
  12. 12.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Damgård, I., Dupont, K., Pedersen, M.Ø.: Unclonable group identification. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 555–572. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: Proceedings of the 28th Symposium on Foundations of Computer Science (FOCS), pp. 427–437. IEEE Computer Society Press, Los Alamitos (1987)Google Scholar
  15. 15.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  16. 16.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin and Camenisch [5], pp.1–19Google Scholar
  17. 17.
    Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt, Y. (ed.) Public Key Cryptography. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering over arbitrarily partitioned data. In: Grossman, R., Bayardo, R., Bennett, K.P. (eds.) KDD, pp. 593–599. ACM, New York (2005)Google Scholar
  21. 21.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)Google Scholar
  22. 22.
    Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptology 15(3), 177–206 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Liu, X., Yang, X., Wetherall, D., Anderson, T.: Efficient and secure source authentication with packet passports. In: Proceedings of 2nd USENIX Steps to Reduce Unwanted Traffic on the Internet workshop (SRUTI 2006) (2006)Google Scholar
  26. 26.
    Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Samarati, P. (ed.) Proceedings of the 8th ACM Conference on Computer and Communications Security, Philadelphia, PA, USA, November 2001, pp. 116–125. ACM Press, New York (2001)CrossRefGoogle Scholar
  27. 27.
    Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended abstract). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526. Springer, Heidelberg (1991)Google Scholar
  28. 28.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptology 15(2), 75–96 (2002)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Stadler, M., Piveteau, J.-M., Camenisch, J.: Fair blind signatures. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, Springer, Heidelberg (1995)Google Scholar
  31. 31.
    Yang, X., Wetherall, D., Anderson, T.: A dos-limiting network architecture. In: ACM SIGCOMM, pp. 241–252 (2005)Google Scholar
  32. 32.
    Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving classification of customer data without loss of accuracy. In: SIAM International Data Mining Conference (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Aggelos Kiayias
    • 1
  • Shouhuai Xu
    • 2
  • Moti Yung
    • 3
  1. 1.Computer Science and EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.University of TexasSan AntonioUSA
  3. 3.Google Inc. and Computer ScienceColumbia UniversityNew York, NYUSA

Personalised recommendations