Advertisement

An Improved Robust Fuzzy Extractor

  • Bhavana Kanukurthi
  • Leonid Reyzin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5229)

Abstract

We consider the problem of building robust fuzzy extractors, which allow two parties holding similar random variables W, W′ to agree on a secret key R in the presence of an active adversary. Robust fuzzy extractors were defined by Dodis et al. in Crypto 2006 to be noninteractive, i.e., only one message P, which can be modified by an unbounded adversary, can pass from one party to the other. This allows them to be used by a single party at different points in time (e.g., for key recovery or biometric authentication), but also presents an additional challenge: what if R is used, and thus possibly observed by the adversary, before the adversary has a chance to modify P. Fuzzy extractors secure against such a strong attack are called post-application robust.

We construct a fuzzy extractor with post-application robustness that extracts a shared secret key of up to (2m − n)/2 bits (depending on error-tolerance and security parameters), where n is the bit-length and m is the entropy of W. The previously best known result, also of Dodis et al., extracted up to (2m − n)/3 bits (depending on the same parameters).

Keywords

Hash Function Message Authentication Code Fuzzy Extractor Strong Extractor Adversarial Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BBCM95]
    Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Transactions on Information Theory 41(6), 1915–1923 (1995)zbMATHCrossRefGoogle Scholar
  2. [BBR88]
    Bennett, C., Brassard, G., Robert, J.: Privacy amplification by public discussion. SIAM Journal on Computing 17(2), 210–229 (1988)CrossRefMathSciNetGoogle Scholar
  3. [BDK+05]
    Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005)Google Scholar
  4. [CDF+08]
    Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. [CW79]
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences 18, 143–154 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [DKRS06]
    Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenticated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 20–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. [DKRS08]
    Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and authenticated key agreement from close secrets. Manuscript (2008)Google Scholar
  8. [DORS08]
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing 38(1), 97–139 (2008)CrossRefMathSciNetGoogle Scholar
  9. [DS02]
    Dodis, Y., Spencer, J.: On the (non-)universality of the one-time pad. In: 43rd Annual Symposium on Foundations of Computer Science, pp. 376–385. IEEE, Los Alamitos (2002)Google Scholar
  10. [HILL99]
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Mau93]
    Maurer, U.: Protocols for secret key agreement by public discussion based on common information. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 461–470. Springer, Heidelberg (1994)Google Scholar
  12. [Mau97]
    Maurer, U.: Information-theoretically secure secret-key agreement by NOT authenticated public discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 209–225. Springer, Heidelberg (1997)Google Scholar
  13. [MS77]
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Elsevier Science (1977)Google Scholar
  14. [MW97]
    Maurer, U., Wolf, S.: Privacy amplification secure against active adversaries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–321. Springer, Heidelberg (1997)Google Scholar
  15. [MW03]
    Maurer, U., Wolf, S.: Secret-key agreement over unauthenticated public channels — Part III: Privacy amplification. IEEE Trans. Info. Theory 49(4), 839–851 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [NZ96]
    Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Computer and System Sciences 52(1), 43–53 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [PRTG02]
    Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions. Science 297, 2026–2030 (2002)CrossRefGoogle Scholar
  18. [RW03]
    Renner, R., Wolf, S.: Unconditional authenticity and privacy from an arbitrarily weak secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 78–95. Springer, Heidelberg (2003)Google Scholar
  19. [RW04]
    Renner, R., Wolf, S.: The exact price for unconditionally secure asymmetric cryptography. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 109–125. Springer, Heidelberg (2004)Google Scholar
  20. [WC81]
    Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22, 265–279 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Wic08]
    Wichs, D.: Private Communication (2008)Google Scholar
  22. [Wol98]
    Wolf, S.: Strong security against active attacks in information-theoretic secret-key agreement. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 405–419. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. [Wyn75]
    Wyner, A.D.: The wire-tap channe. Bell System Technical Journal 54(8), 1355–1387 (1975)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bhavana Kanukurthi
    • 1
  • Leonid Reyzin
    • 1
  1. 1.Computer ScienceBoston UniversityBostonUSA

Personalised recommendations