Skip to main content

Learning Dance Movements by Imitation: A Multiple Model Approach

  • Conference paper
KI 2008: Advances in Artificial Intelligence (KI 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5243))

Included in the following conference series:

Abstract

Imitation learning is an intuitive and easy way of programming robots. Instead of specifying motor commands, you simply show the robot what to do. This paper presents a modular connectionist architecture that enables imitation learning in a simulated robot. The robot imitates human dance movements, and the architecture self-organizes the decomposition of movements into submovements, which are controlled by different modules. Modules both dominate and collaborate during control of the robot. Low-level examination of the inverse models (i.e. motor controllers) reveals a recurring pattern of neural activity during repetition of movements, indicating that the modules successfully capture specific parts of the trajectory to be imitated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Piaget, J.: Play, dreams and imitation in childhood. W. W. Norton, New York (1962)

    Google Scholar 

  2. Meltzoff, A.N., Moore, M.K.: Explaining facial imitation: A theoretical model. Early Development and Parenting 6, 179–192 (1997)

    Article  Google Scholar 

  3. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recognition of motor actions. Cognitive Brain Research 3, 131–141 (1996)

    Article  Google Scholar 

  4. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences 3(6), 233–242 (1999)

    Article  Google Scholar 

  5. Arbib, M.: The Mirror System, Imitation, and the Evolution of Language. In: Imitation in animals and artifacts, pp. 229–280. MIT Press, Cambridge (2002)

    Google Scholar 

  6. Gallese, V., Goldman, A.: Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences 2(12) (1998)

    Google Scholar 

  7. Demiris, Y., Khadhouri, B.: Hierarchical attentive multiple models for execution and recognition of actions. Robotics and Autonomous Systems 54, 361–369 (2006)

    Article  Google Scholar 

  8. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for motor control and social interaction. Philosophical Transactions: Biological Sciences 358(1431), 593–602 (2003)

    Article  Google Scholar 

  9. Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum. Trends in Cognitive Sciences 2(9) (1998)

    Google Scholar 

  10. Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal teacher. Cognitive Science 16, 307–354 (1992)

    Article  Google Scholar 

  11. Kawato, M.: Feedback-error-learning neural network for supervised motor learning. In: Eckmiller, R. (ed.) Advanced neural computers, pp. 365–372 (1990)

    Google Scholar 

  12. Nehaniv, C.L., Dautenhahn, K.: The Correspondence Problem. In: Imitation in Animals and Artifacts, pp. 41–63. MIT Press, Cambridge (2002)

    Google Scholar 

  13. Torres, E.B., Zipser, D.: Simultaneous control of hand displacements and rotations in orientation-matching experiments. J. Appl. Physiol. 96(5), 1978–1987 (2004)

    Article  Google Scholar 

  14. Demiris, Y., Hayes, G.: Imitation as a dual-route process featuring predictive and learning components: a biologically-plausible computational model. In: Imitation in animals and artifacts, pp. 327–361. MIT Press, Cambridge (2002)

    Google Scholar 

  15. Tidemann, A., Öztürk, P.: Self-organizing multiple models for imitation: Teaching a robot to dance the YMCA. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 291–302. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Tolani, D., Badler, N.I.: Real-time inverse kinematics of the human arm. Presence 5(4), 393–401 (1996)

    Google Scholar 

  17. Jaeger, H., Haas, H.: Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science 304(5667), 78–80 (2004)

    Article  Google Scholar 

  18. Diedrichsen, J., Hazeltine, E., Kennerley, S., Ivry, R.B.: Moving to directly cued locations abolishes spatial interference during bimanual actions. Psychological Science 12(6), 493–498 (2001)

    Article  Google Scholar 

  19. Cardoso de Oliveira, S.: The neuronal basis of bimanual coordination: Recent neurophysiological evidence and functional models. Acta Psychologica 110, 139–159 (2002)

    Article  Google Scholar 

  20. d’Avella, A., Bizzi, E.: Shared and specific muscle synergies in natural motor behaviors. PNAS 102(8), 3076–3081 (2005)

    Article  Google Scholar 

  21. Kuniyoshi, Y., Yorozu, Y., Ohmura, Y., Terada, K., Otani, T., Nagakubo, A., Yamamoto, T.: From humanoid embodiment to theory of mind. In: Pierre, S., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 202–218. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas R. Dengel Karsten Berns Thomas M. Breuel Frank Bomarius Thomas R. Roth-Berghofer

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tidemann, A., Öztürk, P. (2008). Learning Dance Movements by Imitation: A Multiple Model Approach. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds) KI 2008: Advances in Artificial Intelligence. KI 2008. Lecture Notes in Computer Science(), vol 5243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85845-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85845-4_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85844-7

  • Online ISBN: 978-3-540-85845-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics