Average-Price and Reachability-Price Games on Hybrid Automata with Strong Resets

  • Patricia Bouyer
  • Thomas Brihaye
  • Marcin Jurdziński
  • Ranko Lazić
  • Michał Rutkowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5215)


We introduce and study hybrid automata with strong resets. They generalize o-minimal hybrid automata, a class of hybrid automata which allows modeling of complex continuous dynamics. A number of analysis problems, such as reachability testing and controller synthesis, are decidable for classes of o-minimal hybrid automata. We generalize existing decidability results for controller synthesis on hybrid automata and we establish new ones by proving that average-price and reachability-price games on hybrid systems with strong resets are decidable, provided that the structure on which the hybrid automaton is defined has a decidable first-order theory. Our proof techniques include a novel characterization of values in games on hybrid systems by optimality equations, and a definition of a new finitary equivalence relation on the states of a hybrid system which enables a reduction of games on hybrid systems to games on finite graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Schaft, A.J., Schumacher, H.: An introduction to hybrid dynamical systems. Lecture Notes in Control and Information Sciences, vol. 251. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Henzinger, T.A.: The theory of hybrid automata. In: Logic in Computer Science, LICS 1996, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  5. 5.
    Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Mathematics of Control, Signals, and Systems 13, 1–21 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brihaye, T., Michaux, C.: On the expressiveness and decidability of o-minimal hybrid systems. Journal of Complexity 21, 447–478 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gentilini, R.: Reachability problems on extended o-minimal hybrid automata. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 162–176. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Bouyer, P., Brihaye, T., Chevalier, F.: Weighted o-minimal hybrid systems are more decidable than weighted timed automata! In: Artemov, S.N., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 69–83. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Church, A.: Logic, arithmetic and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35 (1962)Google Scholar
  12. 12.
    Bouyer, P., Brihaye, T., Chevalier, F.: Control in o-minimal hybrid systems. In: Logic in Computer Science, LICS 2006, pp. 367–378. IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  13. 13.
    Jurdziński, M., Trivedi, A.: Reachability-time games on timed automata. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 838–849. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Brihaye, T., Michaux, C., Rivière, C., Troestler, C.: On o-minimal hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 219–233. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Brihaye, Th.: A note on the undecidability of the reachability problem for o-minimal dynamical systems. Mathematical Logic Quarterly 52, 165–170 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Adler, B.T., de Alfaro, L., Faella, M.: Average reward timed games. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 65–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Puterman, M.L.: Markov Decision Processes. Discrete Stochastic Dynamic Programming. Wiley, Chichester (1994)zbMATHGoogle Scholar
  18. 18.
    Meer, K., Michaux, C.: A survey on real structural complexity theory. Bulletin of the Belgian Mathematical Society. Simon Stevin 4, 113–148 (1997)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. American Mathematical Society. Bulletin. New Series 21, 1–46 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press (1951)Google Scholar
  21. 21.
    Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Thomas Brihaye
    • 2
  • Marcin Jurdziński
    • 3
  • Ranko Lazić
    • 3
  • Michał Rutkowski
    • 3
  1. 1.LSV, CNRS & ENS de CachanFrance
  2. 2.Institut de MathématiquesUniversity of Mons-HainautBelgium
  3. 3.Department of Computer ScienceUniversity of WarwickUK

Personalised recommendations