Advertisement

Parametric Model-Checking of Time Petri Nets with Stopwatches Using the State-Class Graph

  • Louis-Marie Traonouez
  • Didier Lime
  • Olivier H. Roux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5215)

Abstract

In this paper, we propose a new framework for the parametric verification of time Petri nets with stopwatches controlled by inhibitor arcs. We first introduce an extension of time Petri nets with inhibitor arcs (ITPNs) with temporal parameters. Then, we define a symbolic representation of the parametric state space based on the classical state class graph method. The parameters of the model are embedded into the firing domains of the classes, that are represented by convex polyhedra. Finally, we propose semi-algorithms for the parametric model-checking of a subset of parametric TCTL formulae on ITPNs. We can thus generate the set of the parameter valuations that satisfy the formulae.

Keywords

Time Petri nets stopwatches model-checking parameters state-class graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Merlin, P.: A study of the recoverability of computing systems. PhD thesis, Department of Information and Computer Science, Univ. of California, Irvine (1974)Google Scholar
  2. 2.
    Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Time state space analysis of real-time preemptive systems. IEEE trans. on Soft. Eng. 30(2), 97–111 (2004)CrossRefGoogle Scholar
  3. 3.
    Roux, O.H., Lime, D.: Time Petri nets with inhibitor hyperarcs. Formal semantics and state space computation. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 371–390. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Berthomieu, B., Lime, D., Roux, O.H., Vernadat, F.: Reachability problems and abstract state spaces for time petri nets with stopwatches. Discrete Event Dynamic Systems 17(2), 133–158 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM Symposium on Theory of Computing, pp. 592–601 (1993)Google Scholar
  6. 6.
    Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Bruyère, V., Raskin, J.F.: Real-time model-checking: Parameters everywhere. CoRR abs/cs/0701138 (2007)Google Scholar
  8. 8.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HYTECH: A model checker for hybrid systems. Int. Journal on Soft. Tools for Technology Transfer 1(1–2), 110–122 (1997)zbMATHCrossRefGoogle Scholar
  9. 9.
    Wang, F.: Parametric timing analysis for real-time systems. Inf. Comput. 130(2), 131–150 (1996)zbMATHCrossRefGoogle Scholar
  10. 10.
    Virbitskaite, I., Pokozy, E.: Parametric behaviour analysis for time petri nets. In: Malyshkin, V.E. (ed.) PaCT 1999. LNCS, vol. 1662, pp. 134–140. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE trans. on Soft. Eng. 17(3), 259–273 (1991)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hadjidj, R., Boucheneb, H.: On-the-fly tctl model checking for time petri nets using state class graphs. In: ACSD, pp. 111–122. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  13. 13.
    Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-checking of time petri nets with stopwatches using the state-class graph. Technical Report RI2008-3, IRCCyN, Nantes, France (2008)Google Scholar
  14. 14.
    Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In: Fundamentals of Computation Theory, pp. 62–88 (1995)Google Scholar
  15. 15.
    Cassez, F., Roux, O.H.: Structural translation from Time Petri Nets to Timed Automata – Model-Checking Time Petri Nets via Timed Automata. The journal of Systems and Software 79(10), 1456–1468 (2006)CrossRefGoogle Scholar
  16. 16.
    Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the expressiveness of timed automata and time Petri nets. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Roux, O.H., Didier Lime, G.G., Magnin, M.: Roméo (2006), http://romeo.rts-software.org
  18. 18.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library. Quaderno 457, Dipartimento di Matematica, Università di Parma, Italy (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Louis-Marie Traonouez
    • 1
  • Didier Lime
    • 1
  • Olivier H. Roux
    • 1
  1. 1.Institute of Research in Communications and Cybernetics of NantesNantes Cedex 03France

Personalised recommendations