Advertisement

Convergence Verification: From Shared Memory to Partially Synchronous Systems

  • K. Mani Chandy
  • Sayan Mitra
  • Concetta Pilotto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5215)

Abstract

Verification of partially synchronous distributed systems is difficult because of inherent concurrency and the potentially large state space of the channels. This paper identifies a subclass of such systems for which convergence properties can be verified based on the proof of convergence for the corresponding discrete-time shared state system. The proof technique extends to the class of systems in which an agent’s state evolves continuously over time. The proof technique has been formalized in the PVS interface for timed I/O automata and applied to verify convergence of a mobile agent pattern formation algorithm.

Keywords

Model Check Mobile Agent Label Transition System Broadcast Channel Shared State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tempo toolset, version 0.2.2 beta (January 2008), http://www.veromodo.com/
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Archer, M., Heitmeyer, C., Sims, S.: TAME: A PVS interface to simplify proofs for automata models. In: Proceedings of UITP 1998 (July 1998)Google Scholar
  4. 4.
    Archer, M., Lim, H., Lynch, N., Mitra, S., Umeno, S.: Specifying and proving properties of timed I/O automata using Tempo. Design Aut. for Emb. Sys (to appear, 2008)Google Scholar
  5. 5.
    Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL in 1995. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 431–434. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Blondel, V., Hendrickx, J., Olshevsky, A., Tsitsiklis, J.: Convergence in multiagent coordination consensus and flocking. In: CDC-ECC, pp. 2996–3000 (2005)Google Scholar
  7. 7.
    Blondel, V., Hendrickx, J., Olshevsky, A., Tsitsiklis, J.: Formations of mobile agents with message loss and delay (preprint, 2007), http://www.ist.caltech.edu/~mitras/research/2008/asynchcoord.pdf
  8. 8.
    Chatterjee, S., Seneta, E.: Towards consensus: some convergence theorems on repeated averaging. J. Applied Probability 14(1), 89–97 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Clavaski, S., Chaves, M., Day, R., Nag, P., Williams, A., Zhang, W.: Vehicle networks: achieving regular formation. In: ACC (2003)Google Scholar
  10. 10.
    Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35(2), 288–323 (1988)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Hendriks, M.: Model checking the time to reach agreement. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 98–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Kaynar, D., Lynch, N., Mitra, S., Garland, S.: TIOA Language. MIT Computer Science and Artificial Intelligence Laboratory, Cambridge (2005)Google Scholar
  13. 13.
    Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O Automata. Synthesis Lectures on CS. Morgan Claypool (November 2005)Google Scholar
  14. 14.
    Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Lim, H., Kaynar, D., Lynch, N., Mitra, S.: Translating timed I/O automata specifications for theorem proving in PVS. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 17–31. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco (1996)zbMATHGoogle Scholar
  17. 17.
    Mitra, S., Chandy, K.M.: A formalized theory for verifying stability and convergence of automata in pvs. In: TPHOLs 2008 (to appear, 2008)Google Scholar
  18. 18.
    Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proc. of the IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  19. 19.
    Owre, S., Rajan, S., Rushby, J., Shankar, N., Srivas, M.: PVS: Combining specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Tsitsiklis, J.N.: On the stability of asynchronous iterative processes. Theory of Computing Systems 20(1), 137–153 (1987)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • K. Mani Chandy
    • 1
  • Sayan Mitra
    • 1
  • Concetta Pilotto
    • 1
  1. 1.California Institute of Technology Pasadena

Personalised recommendations