Some Recent Results in Metric Temporal Logic

  • Joël Ouaknine
  • James Worrell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5215)


Metric Temporal Logic (MTL) is a widely-studied real-time extension of Linear Temporal Logic. In this paper we survey results about the complexity of the satisfiability and model checking problems for fragments of MTL with respect to different semantic models. We show that these fragments have widely differing complexities: from polynomial space to non-primitive recursive and even undecidable. However we show that the most commonly occurring real-time properties, such as invariance and bounded response, can be expressed in fragments of MTL for which model checking, if not satisfiability, can be decided in polynomial or exponential space.


Model Check Temporal Logic Turing Machine Linear Temporal Logic Safety Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking for real-time systems. In: Proceeding of LICS 1990. IEEE Comp. Society Press, Los Alamitos (1990)Google Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the ACM 43, 116–146 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In: Proceedings of Real Time: Theory in Practice. LNCS, vol. 600. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Information and Computation 104, 35–77 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alur, R., Henzinger, T.A.: A really temporal logic. Journal of the ACM 41, 181–204 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Alur, R., Madhusudan, P.: Decision Problems for Timed Automata: A Survey. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Bouyer, P., Chevalier, F., Markey, N.: On the Expressiveness of TPTL and MTL. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The Cost of Punctuality. In: Proceedings of LICS 2007. IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  10. 10.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: On Expressiveness and Complexity in Real-time Model Checking. In: Proceedings of ICALP 2008. LNCS. Springer, Heidelberg (to appear, 2008)Google Scholar
  11. 11.
    Bouyer, P., Markey, N., Ouaknine, J., Schnoebelen, P., Worrell, J.: On Termination for Faulty Channel Machines. In: Proceedings of STACS 2008 (2008)Google Scholar
  12. 12.
    Comon, H., Cortier, V.: Flatness is not a Weakness. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Demri, S., Lazić, R., Nowak, D.: On the Freeze Quantifier in Constraint LTL: Decidability and Complexity. Information and Computation 205(1), 2–24 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Henzinger, T.A.: Sooner is safer than later. Processing Letters 43, 135–141 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Henzinger, T.A.: It’s about time: Real-time logics reviewed. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623. Springer, Heidelberg (1992)Google Scholar
  17. 17.
    Hirshfeld, Y., Rabinovich, A.M.: Logics for Real Time: Decidability and Complexity. Fundam. Inform. 62(1), 1–28 (2004)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Henzinger, T.A., Raskin, J.-F., Shobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. of the London Mathematical Society 2, 236–366 (1952)MathSciNetGoogle Scholar
  20. 20.
    Kamp, J.A.W.: Tense logic and the theory of linear order. Ph.D. Thesis, UCLA (1968)Google Scholar
  21. 21.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  22. 22.
    Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Ostroff, J.: Temporal logic of real-time systems. Research Studies Press, TauntonGoogle Scholar
  24. 24.
    Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata: Closing a decidability gap. In: Proceedings of LICS 2004. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  25. 25.
    Ouaknine, J., Worrell, J.: Metric temporal logic and faulty Turing machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Ouaknine, J., Worrell, J.: Safety metric temporal logic is fully decidable. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Ouaknine, J., Worrell, J.: On the Decidability and Complexity of Metric Temporal Logic over Finite Words. Logicical Methods in Computer Science 3(1) (2007)Google Scholar
  28. 28.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS 1977. IEEE Computer Society Press, Los Alamitos (1977)Google Scholar
  29. 29.
    Raskin, J.-F., Schobbens, P.-Y.: State-clock logic: a decidable real-time logic. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  30. 30.
    Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity. Information Processing Letters 83(5), 251–261 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Joël Ouaknine
    • 1
  • James Worrell
    • 1
  1. 1.Oxford University Computing LaboratoryUK

Personalised recommendations