Skip to main content

Angiogenesis and Vasculogenesis in Multiple Myeloma: Role of Inflammatory Cells

  • Chapter
  • First Online:
Multiple Myeloma

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 183))

Abstract

Angiogenesis plays a central role in the progression of both solid and hematologic tumors. We have focused our attention on multiple myeloma (MM) and on bone marrow stromal cells. These, in fact, both support tumor cell survival and participate in angiogenesis by releasing a broad number of angiogenic cytokines. Macrophages and mast cells may participate in this process through other mechanisms, such as vasculogenic mimicry. Lastly, it has been shown that hematopoietic stem and progenitor cells (HSPCs) are involved in vasculogenesis in MM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anghelina M, Krishnan P, Moldovan L, Moldovan NI (2004) Monocytes and macrophages form branched cell columns in matrigel: implications for their role in neovascularization. Stem Cells Dev 13:665–676

    Article  PubMed  CAS  Google Scholar 

  • Anghelina M, Krishnan P, Moldovan L, Moldovan NI (2006) Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. Am J Pathol 168:529–541

    Article  PubMed  CAS  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow. Lancet 357:539–545

    Article  PubMed  CAS  Google Scholar 

  • Bellamy WT, Richter L, Frutiger Y, Grogan TM (1999) Expression of vascular endothelial growth factor and its receptors in hematological malignancies. Blood 59:728–733

    CAS  Google Scholar 

  • Coluccia AML, Cirulli T, Neri P, Mangieri D, Colanardi MC, Gnoni A, Di Renzo N, Tassone P, Ribatti D, Dammacco F, Gambacorti-Passerini C, Vacca A (2008) Validation of PDGFRβ and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib (BMS-354825/Sprycel®). Blood 112:1346–1356

    Article  PubMed  CAS  Google Scholar 

  • Crivellato E, Nico B, Ribatti D (2008) Mast cells and tumour angiogenesis: new insight from experimental carcinogenesis. Cancer Lett 269:1–6

    Article  PubMed  CAS  Google Scholar 

  • Di Raimondo F, Azzaro MP, Palombo G, Bagnato S, Giustolisi G, Floridia P, Sortino G, Giustolisi R (2000) Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 85:800–805

    PubMed  Google Scholar 

  • Fernandez Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, Adamkiewicz J, Elsasser HP, Muller R, Havemann K (2000) Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65:287–300

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama S, Amano K, Uehira K, Yoshida M, Nishiwaki Y, Nozawa Y, Jin D, Takai S, Miyazaki M, Egashira K, Imada T, Iwasaka T, Matsubara H (2003) Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate re-endothelization as endothelial progenitor cells. Circ Res 93:980–989

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7:585–598

    Article  PubMed  CAS  Google Scholar 

  • Klimp AH, Hollema H, Kempinga C, van der Zee AG, De Vries EG, Daemen T (2001) Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Res 61:7305–7309

    PubMed  CAS  Google Scholar 

  • Kumar S, Witzig TE, Timm M, Huang J, Wellik L, Kimlinger TK, Griepp PR, Rajkumar SV (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favouring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165

    Article  PubMed  CAS  Google Scholar 

  • Lewis CE, Leek R, Harris A, Mc Gee JO (1995) Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. J Leukoc Biol 57:747–751

    PubMed  CAS  Google Scholar 

  • Mangieri D, Nico B, Benagiano V, De Giorgis M, Vacca A, Ribatti D (2008) Angiogenic activity of multiple myeloma endothelial cells in vivo in the chick embryo chorioallantoic membrane assay is associated to a down-regulation in the expression of endogenous endostatin. J Cell Mol Med 12:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155:739–752

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13:265–270

    Article  PubMed  CAS  Google Scholar 

  • Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, Shapiro SD, Kolattukudy E (2000) Contribution of moncytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ Res 87:378–384

    PubMed  CAS  Google Scholar 

  • Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a role in the growth of plasma cell tumors. J Clin Invest 114:1317–1325

    PubMed  CAS  Google Scholar 

  • Nico B, Mangieri D, Crivellato E, Vacca A, Ribatti D (2008) Mast cells contribute to vasculogenic mimicry in multiple myeloma. Stem Cells Dev 17:19–22

    Article  PubMed  CAS  Google Scholar 

  • Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169

    Article  PubMed  Google Scholar 

  • Ria R, Piccoli C, Cirulli T, Falzetti F, Mangialardi G, Guidolin D, Tabilio A, Di Renzo N, Guarini A, Ribatti D, Dammacco F, Vacca A (2008) Endothelial differentiation of hematopoietic stem and progenitor cells from patients with multiple myeloma. Clin Cancer Res 14:1678–1685

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D (2007) The discovery of endothelial progenitor cells. An historical review. Leuk Res 31:439–444

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Vacca A (2008) Angiogenesis and anti-angiogenesis in haematological diseases. MEMO 1:31–33

    Article  Google Scholar 

  • Ribatti D, Vacca A, Nico B, Quondamatteo F, Ria R, Minischetti M, Marzullo A, Herken R, Roncali L, Dammacco F (1999) Bone marrow angiogenesis and mast cell density increase simultaneously with progression of human multiple myeloma. Br J Cancer 79:451–455

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Vacca A, Dammacco F (2003) New non-angiogenesis dependent pathways for tumor growth. Eur J Cancer 39:1835–1841

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Crivellato E, Roccaro AM, Ria R, Vacca A (2004) Mast cell contribution to angiogenesis related to tumor progression. Clin Exp Allergy 34:1660–1664

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Nico B, Crivellato E, Vacca A (2005) Endothelial progenitor cells in health and disease. Histol Histopathol 20:1351–1358

    PubMed  CAS  Google Scholar 

  • Ribatti D, Nico B, Vacca A (2006) Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25:4257–4266

    Article  PubMed  CAS  Google Scholar 

  • Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A (2007) The history of the angiogenic switch concept. Leukemia 21:44–52

    Article  PubMed  CAS  Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  • Risau W, Lemmon D (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  PubMed  CAS  Google Scholar 

  • Scavelli C, Nico B, Cirulli T, Ria R, Di Pietro G, Mangieri D, Bacigalupo A, Mangialardi G, Coluccia AML, Caravita T, Molica S, Ribatti D, Dammacco F, Vacca A (2008) Vasculogenic mimicry by bone marrow macrophages in patient with multiple myeloma. Oncogene 27:663–674

    Article  PubMed  CAS  Google Scholar 

  • Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, Daniel WG (2001) Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel® under angiogenic conditions. Cardiovasc Res 49:671–680

    Article  PubMed  CAS  Google Scholar 

  • Sunderkotter C, Goebeler M, Schiltze-Osthoff K, Bhardway R, Sorg C (1991) Macrophages-derived angiogenesis factors. Pharmacol Ther 51:195–216

    Article  PubMed  CAS  Google Scholar 

  • Theoharides TC, Conti P (2004) Mast cells: the Jeckyll and Hyde of tumor growth. Trends Immunol 25:235–241

    Article  PubMed  CAS  Google Scholar 

  • Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20: 193–199

    Article  PubMed  CAS  Google Scholar 

  • Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87:503–508

    Article  PubMed  CAS  Google Scholar 

  • Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1999) Bone marrow neovascularization, plasma cell angiogenic potential and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073

    PubMed  CAS  Google Scholar 

  • Vacca A, Ria R, Semeraro F, Merchionne F, Coluccia M, Boccarelli A, Scavelli C, Nico B, Gernone A, Bottelli F, Tabilio A, Guidolin D, Petrucci MT, Ribatti D, Dammacco F (2003) Endothelial cells in the bone marrow of patients with multiple myeloma. Blood 102:3340–3348

    Article  PubMed  CAS  Google Scholar 

  • Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M, Bicciato S, Nico B, Ribatti D, Dammacco F, Corradini P (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23:5334–5346

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Glesne D, Huberman E (2003) A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proc Natl Acad Sci USA 100:2426–2431

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Associazione Italiana per la Ricerca sul Cancro (AIRC), Milan; the Ministry of Education, University and Research (MIUR, PRIN Projects 2007), Rome; the Ministry of Health, Progetto Oncologia 2006, Rome; Humanitas Mirasole S.p.A., Rome; Fondazione Cassa di Risparmio di Puglia, Bari, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Vacca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vacca, A., Ribatti, D. (2011). Angiogenesis and Vasculogenesis in Multiple Myeloma: Role of Inflammatory Cells. In: Moehler, T., Goldschmidt, H. (eds) Multiple Myeloma. Recent Results in Cancer Research, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85772-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85772-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85771-6

  • Online ISBN: 978-3-540-85772-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics