Advertisement

Indonesian-English Transitive Translation for Cross-Language Information Retrieval

  • Mirna Adriani
  • Herika Hayurani
  • Syandra Sari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5152)

Abstract

This is a report on our evaluation of using some language resources for the Indonesian-English bilingual task of the 2007 Cross-Language Evaluation Forum (CLEF). We chose to translate an Indonesian query set into English using machine translation, transitive translation, and parallel corpus-based techniques. We also made an attempt to improve the retrieval effectiveness using a query expansion technique. The result shows that the best retrieval performance was achieved by combining the machine translation technique and the query expansion technique.

Keywords

Machine Translation Retrieval Performance Query Expansion Mean Average Precision Language Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adriani, M., van Rijsbergen, C.J.: Term Similarity Based Query Expansion for Cross Language Information Retrieval. In: Abiteboul, S., Vercoustre, A.-M. (eds.) ECDL 1999. LNCS, vol. 1696, pp. 311–322. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Adriani, M.: Ambiguity Problem in Multilingual Information Retrieval. In: CLEF 2000 Working Note Workshop, Portugal (2000)Google Scholar
  3. 3.
    Ballesteros, L.A.: Cross Language Retrieval via transitive translation. In: Croft, W.B. (ed.) Advances in Information Retrieval: Recent Research from the CIIR, pp. 203–234. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  4. 4.
    Chen, J., Nie, J.: Automatic Construction of Parallel English-Chinese Corpus for Cross-Language Information Retrieval. In: Proceedings of the 6th Conference on Applied Natural Language Processing, pp. 90–95. ACM Press, New York (2000)Google Scholar
  5. 5.
    Larenko, V., Choquette, M., Croft, W.B.: Cross-Lingual Relevance Models. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 175–182. ACM Press, New York (2002)CrossRefGoogle Scholar
  6. 6.
    Nie, J., Simard, M., Isabelle, P., Durand, R.: Cross-Language Information Retrieval Based on Parallel Text and Automatic Mining of Parallel Text from the Web. In: Proceedings of the 22th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press, New York (1999)Google Scholar
  7. 7.
    Gollins, T., Sanderson, M.: Improving Cross Language Retrieval with Triangulated Retrieval. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 90–95. ACM Press, New York (2004)Google Scholar
  8. 8.
    Lehtokangas, R., Airio, E., Jarvelin, K.: Transitive Dictionary Translation Challenges Direct Dictionary Translation in CLIR. Information Processing and Management: An International Journal 40(6), 973–988 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mirna Adriani
    • 1
  • Herika Hayurani
    • 1
  • Syandra Sari
    • 1
  1. 1.Faculty of Computer ScienceUniversity of IndonesiaDepokIndonesia

Personalised recommendations