Automatic Extraction of Process Control Flow from I/O Operations

  • Pedro C. Diniz
  • Diogo R. Ferreira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5240)


Many end users will expect the output of process mining to be a model they can easily understand. On the other hand, knowing which objects were accessed in each operation can be a valuable input for process discovery. From these two trends it is possible to establish an analogy between process mining and the discovery of program structure. In this paper we present an approach for extracting process control-flow from a trace of read and write operations over a set of objects. The approach is divided in two independent phases. In the first phase, Fourier analysis is used to identify periodic behavior that can be represented with loop constructs. In the second phase, a match-and-merge technique is used to produce a control-flow graph capable of generating the input trace and thus representing the process that generated it. The combination of these techniques provides a structured and compact representation of the unknown process, with very good results in terms of conformance metrics.


Process mining Control-flow graphs Fourier analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.: The application of petri nets to workflow management. Journal of Circuits. Systems and Computers 8(1), 21–26 (1998)Google Scholar
  2. 2.
    van der Aalst, W.: Woflan: a petri-net-based workflow analyzer. Systems Analysis Modelling Simulation 35(3), 345–357 (1999)zbMATHGoogle Scholar
  3. 3.
    van der Aalst, W.: Loosely coupled interorganizational workflows: Modeling and analyzing workflows crossing organizational boundaries. Information and Management 37(2), 67–75 (2000)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W., ter Hofstede, A.: Loosely coupled interorganizational workflows: Modeling and analyzing workflows crossing organizational boundaries. Information Systems 25(1), 43–69 (2000)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  6. 6.
    Rozinat, A., van der Aalst, W.: Conformance checking of processes based on monitoring real behavior. Information Systems 33(1), 64–95 (2008)CrossRefGoogle Scholar
  7. 7.
    van der Aalst, W., ter Hofstede, A.: YAWL: Yet another workflow language. Information Systems 30(4), 245–275 (2005)CrossRefGoogle Scholar
  8. 8.
    van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)CrossRefGoogle Scholar
  9. 9.
    Rosemann, M., Recker, J., Indulska, M., Green, P.: A study of the evolution of the representational capabilities of process modeling grammars. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 447–461. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    van der Aalst, W., ter Hofstede, A., Weske, M.: Business process management: A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Yang, G.: Process library. Data and Knowledge Engineering 50(1), 35–62 (2004)CrossRefGoogle Scholar
  12. 12.
    Emig, C., Weisser, J., Abeck, S.: Development of SOA-based software systems – an evolutionary programming approach. In: Proceedings of the Advanced International Conference on Telecommunications and International Conference on Internet and Web Applications and Services (AICT-ICIW 2006), Washington, DC, p. 182. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  13. 13.
    Ouyang, C., Dumas, M., ter Hofstede, A., van der Aalst, W.: Pattern-based translation of BPMN process models to BPEL web services. International Journal of Web Services Research 5(1), 42–61 (2008)CrossRefGoogle Scholar
  14. 14.
    Kloppmann, M., Knig, D., Leymann, F., Pfau, G., Roller, D.: Business process choreography in websphere: Combining the power of bpel and J2EE. IBM Systems Journal 43(2), 270–296 (2004)CrossRefGoogle Scholar
  15. 15.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  16. 16.
    Greco, G., Guzzo, A., Pontieri, L.: Mining hierarchies of models: From abstract views to concrete specifications. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 32–47. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Herbst, J., Karagiannis, D.: Integrating machine learning and workflow management to support acquisition and adaption of workflow models. In: Proceedings of the 9th International Workshop on Database and Expert Systems Applications, pp. 745–752. IEEE, Los Alamitos (1998)Google Scholar
  18. 18.
    Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process mining with sequence clustering: Experiments and findings. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters, A.: Workflow mining: A survey of issues and approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  20. 20.
    van Dongen, B., van der Aalst, W.: Multi-phase process mining: Building instance graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Verbeek, H., van Dongen, B.: Translating labelled P/T nets into EPCs for sake of communication. BETA Working Paper Series WP 194, Eindhoven University of Technology (2007)Google Scholar
  22. 22.
    Rozinat, A., Mans, R., van der Aalst, W.: Mining CPN models: Discovering process models with data from event logs. In: Proceedings of the Seventh Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools (CPN 2006), Denmark, University of Aarhus, pp. 57–76 (2006)Google Scholar
  23. 23.
    Kuester, J., Ryndina, K., Gall, H.: Generation of business process models for object life cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Hollingsworth, D.: The workflow reference model. Technical Report TC00-1003, Workflow Management Coalition (1995)Google Scholar
  25. 25.
    Oppenheimer, A., Shaffer, R.: Digital Signal Processing. Prentice-Hall, Englewood Cliffs (1975)Google Scholar
  26. 26.
    Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools. Addison-Wesley, Inc., Reading (1986)zbMATHGoogle Scholar
  27. 27.
    Hirschberg, D.S.: Algorithms for the longest common subsequence problem. Journal of the ACM 24(4), 664–675 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Fraser, C., Irving, R.: Approximation algorithms for the shortest common supersequence. Nordic Journal of Computing 2(3), 303–325 (1995)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pedro C. Diniz
    • 1
  • Diogo R. Ferreira
    • 2
  1. 1.IST/INESC-IDTechnical University of LisbonPortugal
  2. 2.IST/INOVTechnical University of LisbonPortugal

Personalised recommendations