Pore-Scale Modelling of Transport Phenomena in Drying

  • T. Metzger
  • T. H. Vu
  • A. Irawan
  • V. K. Surasani
  • E. Tsotsas

Abstract

The work in this chapter is concerned with drying of capillary porous media and investigates how material properties characterizing the pore scale influence macroscopic process behaviour. A first approach to the problem takes a bundle-of-capillaries representation of pore space to parameterise a traditional continuous model of drying. In a second approach, the porous structure is represented by a network of pores, and transport is described by discrete rules at the pore level. By applying these two methods, the influence of pore structure, namely pore volume distribution and spatial correlations of pore size, is studied. Additionally, the role of individual transport phenomena, namely liquid viscosity and heat transfer, for drying behaviour is investigated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Futaisi, A., Patzek, T.W.: Extension of Hoshen-Kopelman algorithm to non-lattice environments. Physica A 331, 665–678 (2003)CrossRefGoogle Scholar
  2. Huinink, H.P., Pel, L., Michels, M.A.J., Prat, M.: Drying processes in the presence of temperature gradients. Pore-scale modelling. Eur Physical J. E. 9, 487–498 (2002)CrossRefGoogle Scholar
  3. Irawan, A.: Isothermal drying of pore networks: Influence of pore structure on drying kinetics. PhD Thesis, Otto-von-Guericke-University Magdeburg, Germany (2006)Google Scholar
  4. Irawan, A., Metzger, T., Tsotsas, E.: Pore network modelling of drying: combination with a boundary layer model to capture the first drying period. In: Proceedings of 7th World Congress of Chemical Engineering, Glasgow, Scotland, pp. 33–42 (2005)Google Scholar
  5. Kharaghani, A., Metzger, T., Tsotsas, E.: Mechanical effects during isothermal drying: a new discrete modelling approach. In: 16th Int Drying Symposium, Hyderabad, India (submitted to 2008)Google Scholar
  6. Laurindo, J.B., Prat, M.: Numerical and experimental network study of evaporation in capillary porous media. Phase distributions. Chem. Eng. Sci. 51, 5171–5185 (1996)CrossRefGoogle Scholar
  7. Laurindo, J.B., Prat, M.: Numerical and experimental network study of evaporation in capillary porous media. Drying rates. Chem. Eng. Sci. 53, 2257–2269 (1998)CrossRefGoogle Scholar
  8. Le Bray, Y., Prat, M.: Three dimensional pore network simulation of drying in capillary porous media. Int. J. Heat Mass Transfer 42, 4207–4224 (1999)MATHCrossRefGoogle Scholar
  9. Metzger, T., Tsotsas, E.: Influence of pore size distribution on drying kinetics: a simple capillary model. Drying Technology 23, 1797–1809 (2005)CrossRefGoogle Scholar
  10. Metzger, T., Tsotsas, E.: Viscous stabilization of drying front: three-dimensional pore network simulations. Chem Eng Research Design, (in press, 2008)Google Scholar
  11. Metzger, T., Irawan, A., Tsotsas, E.: Discrete modelling of drying kinetics of porous media. In: Eikevik, T.M., Alves-Filho, O., Strommen, I. (eds.) Proceedings of 3rd Nordic Drying Conference (NDC 2005), Karlstad, Schweden (2005)Google Scholar
  12. Metzger, T., Irawan, A., Tsotsas, E.: Remarks on the paper “Extension of Hoshen-Kopelman algorithm to non-lattice environments. by Al-Futaisi, A., Patzek, T.W. Physica A 321, 665–678 (2006); Physica A 363, 558–560Google Scholar
  13. Metzger, T., Irawan, A., Tsotsas, E.: Isothermal drying of pore networks: influence of friction for different pore structures. Drying Technology 25, 49–57 (2007a)CrossRefGoogle Scholar
  14. Metzger, T., Irawan, A., Tsotsas, E.: Influence of pore structure on drying kinetics: a pore network study. AIChE J. 53, 3029–3041 (2007b)CrossRefGoogle Scholar
  15. Metzger, T., Kwapinska, M., Peglow, M., Saage, G., Tsotsas, E.: Modern modelling methods in drying. Transport in Porous Media 66, 103–120 (2007c)CrossRefGoogle Scholar
  16. Metzger, T., Tsotsas, E., Prat, M.: Pore-network models: A powerful tool to study drying at the pore level and understand the influence of structure on drying kinetics. In: Tsotsas, E., Mujumdar, A.S. (eds.) Modern drying technology. Computational tools at different scales, vol. 1, Wiley-VCH, Weinheim (2007d)Google Scholar
  17. Nasrallah, S.B., Perré, P.: Detailed study of a model of heat and mass transfer during convective drying of porous media. Int. J. Heat Mass Transfer 31, 957–967 (1988)MATHCrossRefGoogle Scholar
  18. Nowicki, S.C., Davis, H.T., Scriven, L.E.: Microscopic determination of transport parameters in drying porous media. Drying Technology 10, 925–946 (1992)CrossRefGoogle Scholar
  19. Perré, P., Turner, I.W.: A 3-D version of TransPore: a comprehensive heat and mass transfer computational model for simulating the drying of porous media. Int. J. Heat Mass Transfer 42, 4501–4521 (1999)MATHCrossRefGoogle Scholar
  20. Plourde, F., Prat, M.: Pore network simulations of drying of capillary media. Influence of thermal gradients. Int. J. Heat Mass Transfer 46, 1293–1307 (2003)MATHCrossRefGoogle Scholar
  21. Prat, M.: Percolation model of drying under isothermal conditions in porous media. Int. J. Multiphase Flow 19, 691–704 (1993)MATHCrossRefGoogle Scholar
  22. Prat, M.: On the influence of pore shape, contact angle and film flows on drying of capillary porous media. Int. J. Heat Mass Transfer 50, 1455–1468 (2007)MATHCrossRefGoogle Scholar
  23. Segura, L.A., Toledo, P.G.: Pore-level modeling of isothermal drying of pore networks. Effects of gravity and pore shape and size distributions on saturation and transport parameters. Chem. Eng. J. 111, 237–252 (2005)CrossRefGoogle Scholar
  24. Surasani, V.K., Metzger, T., Tsotsas, E.: A non-isothermal pore network drying model: Influence of gravity. In: Proceedings of 6th European Congress of Chemical Engineering (ECCE-6), Copenhagen, No. 2131 (2007)Google Scholar
  25. Surasani, V.K., Metzger, T., Tsotsas, E.: Consideration of heat transfer in pore network modelling of convective drying. Int. J. Heat Mass Transfer 51, 2506–2518 (2008a)CrossRefGoogle Scholar
  26. Surasani, V.K., Metzger, T., Tsotsas, E.: Influence of heating mode on drying behaviour of capillary porous media: pore scale modelling. Submitted to Chemical Engineering Science (2008b)Google Scholar
  27. Turner, I.W., Perré, P.: A synopsis of the strategies and efficient resolution techniques used for modelling and numerically simulating the drying process. In: Turner, I., Mujumdar, A.S. (eds.) Mathematical modeling and numerical techniques in drying technology, Marcel Dekker, New York (1996)Google Scholar
  28. Vu, T.H.: Influence of pore size distribution on drying behaviour of porous media by a continuous model, PhD Thesis, Otto-von-Guericke-University Magdeburg, Germany (2006a)Google Scholar
  29. Vu, T.H., Metzger, T., Tsotsas, E.: Influence of pore size distribution via effective parameters in a continuous drying model. Proceedings of 15th International Drying Symposium, Budapest A, 554–560 (2006b)Google Scholar
  30. Yiotis, A.G., Stubos, A.K., Boudouvis, A.G., Yortsos, Y.C.: A 2-D pore-network model of the drying of single-component liquids in porous media. Adv. Water Resour. 24, 439–460 (2001)CrossRefGoogle Scholar
  31. Yiotis, A.G., Boudouvis, A.G., Stubos, A.K., Tsimpanogiannis, I.N., Yortsos, Y.C.: The effect of liquid films on the drying of porous media. AIChE J. 50, 2721–2737 (2004)CrossRefGoogle Scholar
  32. Yiotis, A.G., Tsimpanogiannis, I.N., Stubos, A.K., Yortsos, Y.C.: Pore-network study of the characteristic periods in the drying of porous materials. J. Colloid Interface Science 297, 738–748 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • T. Metzger
    • 1
  • T. H. Vu
    • 2
  • A. Irawan
    • 3
  • V. K. Surasani
    • 1
  • E. Tsotsas
    • 1
  1. 1.Institut für VerfahrenstechnikOtto-von-Guericke-Universität Magdeburg 
  2. 2.Dept. Machinery & Equipment of Chemical EngineeringHanoi University of Technology 
  3. 3.Dept. of Chemical EngineeringSultan Ageng Tirtayasa UniversityBanten 

Personalised recommendations