Skip to main content

Normal Grain Growth: Monte Carlo Potts Model Simulation and Mean-Field Theory

  • Chapter
Micro-Macro-interaction

Abstract

Grain growth in polycrystals is modelled using an improved Monte Carlo Potts model algorithm. By extensive simulation of three-dimensional normal grain growth it is shown that the simulated microstructure reaches a quasi-stationary self-similar coarsening state, where especially the growth of grains can be described by an average self-similar growth law, which depends only on the number of faces described by a square-root law. Together with topological considerations a non-linear effective growth law results. A generalized analytic mean-field theory based on the growth law yields a scaled grain size distribution function that is in excellent agreement with the simulation results. Additionally, a comparison of simulation and theory with experimental results is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbruzzese, G., Lücke, K.: Statistical theory of grain growth: a general approach. Mater. Sci. Forum 204-206, 55–70 (1996)

    Google Scholar 

  • Anderson, M.P., Srolovitz, D.J., Grest, G.S., Sahni, P.S.: Computer simulation of grain growth – 1. Kinetics. Acta Metall. 32, 783–791 (1984)

    Article  Google Scholar 

  • Anderson, M.P., Grest, G.S., Srolovitz, D.J.: Computer simulation of normal grain growth in three dimensions. Phil. Mag. B 59, 293–329 (1989)

    Article  Google Scholar 

  • Atkinson, H.V.: Theories of normal grain growth in pure single phase systems. Acta Metall. 36, 469–491 (1988)

    Article  Google Scholar 

  • Burke, J.E.: Some factor affecting the rate of grain growth in metals. Trans. Metall. Soc. AIME 180, 73–91 (1949)

    Google Scholar 

  • Burke, J.E., Turnbull, D.: Recrystallization and grain growth. Progr. Met. Phys. 3, 220–292 (1952)

    Article  Google Scholar 

  • Glicksman, M.E.: Analysis of 3-d network structures. Phil. Mag. 85, 3–31 (2005)

    Article  Google Scholar 

  • Hilgenfeldt, S., Kraynik, A.M., Koehler, S.A., Stone, H.A.: An accurate von Neumann’s law for three-dimensional foams. Phys. Rev. Lett. 86, 2685–2688 (2001)

    Article  Google Scholar 

  • Hillert, M.: On the theory of normal and abnormal grain growth. Acta Metall. 13, 227–238 (1965)

    Article  Google Scholar 

  • Holm, E.A., Glazier, J.A., Srolovitz, D., Grest, G.S.: The effect of lattice anisotropy and temperature on domain growth in the two-dimensional Potts model. Phys. Rev. A 43, 2662–2668 (1991)

    Article  Google Scholar 

  • Holm, E.A., Hassold, G.N., Miodownik, M.A.: On misorientation distribution evolution during anisotropic grain growth. Acta Mater. 49, 2981–2991 (2001)

    Article  Google Scholar 

  • Hu, H.: Grain growth in zone-refined iron. Can. Metall. 13, 275–286 (1974)

    Google Scholar 

  • Huang, Y., Humphreys, F.J.: Subgrain growth and low angle boundary mobility in aluminum crystals of orientation {110}<001>. Acta Mater. 48, 2017–2030 (2000)

    Article  Google Scholar 

  • Hui, L., Guanghou, W., Feng, D., Xiufang, B., Pederiva, F.: Monte Carlo simulation of three-dimensional polycrystalline material. Mater. Sci. Eng. A 357, 153–158 (2003)

    Article  Google Scholar 

  • Ivasishin, O.M., Shevchenko, S.V., Vasiliev, N.L., Semiatin, S.L.: 3D Monte-Carlo simulation of texture-controlled grain growth. Acta Mater. 51, 1019–1034 (2003)

    Article  Google Scholar 

  • Kim, Y.J., Hwang, S.K., Kim, M.H., Kwun, S.I., Chae, S.W.: Three-dimensional Monte-Carlo simulation of grain growth using triangular lattice. Mater. Sci. Eng. A 408, 110–120 (2005)

    Article  Google Scholar 

  • Krill III, C.E., Chen, L.-Q.: Computer simulation of 3-D grain growth using a phase-field model. Acta Mater. 50, 3059–3075 (2002)

    Article  Google Scholar 

  • Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961)

    Article  Google Scholar 

  • Louat, N.P.: On the theory of normal grain growth. Acta Metall. 22, 721–724 (1974)

    Article  Google Scholar 

  • Miodownik, M.A.: A review of microstructural computer models used to simulate grain growth and recrystallisation in aluminium alloys. J. Light Metals 2, 125–135 (2002)

    Article  Google Scholar 

  • Miyake, A.: Monte Carlo simulation of normal grain growth in 2- and 3-dimensions: the lattice-model-independent grain size distribution. Contrib. Mineral. Petrol. 130, 121–133 (1998)

    Article  Google Scholar 

  • Mullins, W.W.: Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27, 900–904 (1956)

    Article  MathSciNet  Google Scholar 

  • Mullins, W.W.: The statistical self-similarity hypothesis in grain growth and particle coarsening. J. Appl. Phys. 59, 1341–1349 (1986)

    Article  Google Scholar 

  • von Neumann, J.: Written discussion of grain shapes and other metallurgical applications of topology. In: Metal Interfaces, American Society for Metals, Cleveland OH, pp. 108–110 (1952)

    Google Scholar 

  • Ohser, J., Mücklich, F.: Statistical analysis of microstructures in materials science. Wiley, Chichester (2000)

    MATH  Google Scholar 

  • Read, T.W., Shockley, W.: Dislocation models of crystal grain boundaries. Phys. Rev. 78, 275–289 (1950)

    Article  MATH  Google Scholar 

  • Saito, Y.: Monte Carlo simulation of grain growth in three-dimensions. ISIJ Int. 38, 559–566 (1998)

    Article  Google Scholar 

  • Smith, C.S.: Grain shapes and other metallurgical applications of topology. In: Metal Interfaces, American Society for Metals, Cleveland OH, pp. 65–109 (1952)

    Google Scholar 

  • Song, X., Liu, G.: A simple and efficient three-dimensional Monte Carlo simulation of grain growth. Scripta Mater. 38, 1691–1696 (1998)

    Article  Google Scholar 

  • Srolovitz, D.J., Anderson, M.P., Sahni, P.S., Grest, G.S.: Computer simulation of grain growth – II. Grain size distribution, topology and local dynamics. Acta Metall. 32, 793–802 (1984)

    Article  Google Scholar 

  • Streitenberger, P.: Generalized Lifshitz-Slyozov theory of grain and particle coarsening for arbitrary cut-off parameter. Scripta Mater. 39, 1719–1724 (1998)

    Article  Google Scholar 

  • Streitenberger, P.: Analytic model of grain growth based on a generalized LS stability argument and topological relationships. In: Gottstein, G., Molodov, D.A. (eds.) Recrystallization and grain growth, pp. 257–262. Springer, Berlin (2001)

    Google Scholar 

  • Streitenberger, P., Zöllner, D.: Effective growth law from three-dimensional grain growth simulations and new analytical grain size distribution. Scripta Mater. 55, 461–464 (2006)

    Article  Google Scholar 

  • Streitenberger, P., Zöllner, D.: Topology based growth law and new analytical grain size distribution function of 3D grain growth. Mater. Sci. Forum 558-559, 1183–1188 (2007)

    Google Scholar 

  • Sutton, A.P., Balluffi, R.W.: Interfaces in Crystalline Materials. Oxford Science Pub. (1995)

    Google Scholar 

  • Thompson, C.V.: Grain growth and evolution of other cellular structures. Solid State Phys. 55, 269–316 (2001)

    Google Scholar 

  • Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Elektrochem. 65, 581–591 (1961)

    Google Scholar 

  • Wakai, F., Enomoto, N., Ogawa, H.: Three-dimensional microstructural evolution in ideal grain growth - general statistics. Acta Mater. 48, 1297–1311 (2000)

    Article  Google Scholar 

  • Weygand, D., Bréchet, Y., Lépinoux, J., Gust, W.: Three-dimensional grain growth: A vertex dynamics simulation. Phil. Mag. B 79, 703–716 (1999)

    Article  Google Scholar 

  • Yu, Q., Esche, S.K.: A Monte Carlo algorithm for single phase normal grain growth with improved accuracy and efficiency. Comp. Mater. Sci. 27, 259–270 (2003)

    Article  Google Scholar 

  • Zhang, C., Suzuki, A., Ishimaru, T., Enomoto, M.: Characterization of three-dimensional grain structure in polycrystalline iron by serial sectioning. Metall. Mater. Trans. 35A, 1927–1933 (2004)

    Article  Google Scholar 

  • Zöllner, D.: Monte Carlo Potts Model Simulation and Statistical Mean-Field Theory of Normal Grain Growth. Shaker, Aachen (2006)

    Google Scholar 

  • Zöllner, D., Streitenberger, P.: Computer Simulations and Statistical Theory of Normal Grain Growth in Two and Three Dimensions. Mater. Sci. Forum 467-470, 1129–1134 (2004)

    Article  Google Scholar 

  • Zöllner, D., Streitenberger, P.: Three Dimensional Normal Grain Growth: Monte Carlo Potts Model Simulation and Analytical Mean Field Theory. Scripta Mater. 54, 1697–1702 (2006)

    Article  Google Scholar 

  • Zöllner, D., Streitenberger, P.: Normal Grain Growth in Three Dimensions: Monte Carlo Potts Model Simulation and Mean-Field Theory. Mater. Sci. Forum 550, 589–594 (2007a)

    Google Scholar 

  • Zöllner, D., Streitenberger, P.: Monte Carlo Potts model simulation and statistical theory of 3D grain growth. Mater. Sci. Forum 558-559, 1219–1224 (2007b)

    Google Scholar 

  • Zöllner, D., Streitenberger, P.: New analytical grain size distribution in comparison with computer simulated and experimental data. In: Mücklich, F. (ed.) Fortschritte in der Metallographie. Praktische Metallographie Sonderband, vol. 39, pp. 97–102. DGM Werkstoff-Informationsgesellschaft mbH, Frankfurt (2007c)

    Google Scholar 

  • Zöllner, D., Streitenberger, P.: Monte Carlo Simulation of Normal Grain Growth in Three Dimensions. Mater. Sci. Forum 567-568, 81–84 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zöllner, D., Streitenberger, P. (2008). Normal Grain Growth: Monte Carlo Potts Model Simulation and Mean-Field Theory. In: Bertram, A., Tomas, J. (eds) Micro-Macro-interaction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85715-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85715-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85714-3

  • Online ISBN: 978-3-540-85715-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics