Skip to main content

Peptidase Do

  • Chapter
Class 3 Hydrolases

Part of the book series: Springer Handbook of Enzymes ((HDBKENZYMES,volume S5))

  • 703 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, D.Y.; Kim, K.K.: Crystallization and preliminary X-ray studies of the protease domain of the heat-shock protein HtrA from Thermotoga maritima. Acta Crystallogr. Sect. D, 58, 170–172 (2002)

    Article  Google Scholar 

  2. Swamy, K.H.; Chung, C.H.; Goldberg, A.L.: Isolation and characterization of protease do from Escherichia coli, a large serine protease containing multiple subunits. Arch. Biochem. Biophys., 224, 543–554 (1983)

    Article  PubMed  CAS  Google Scholar 

  3. Skorko-Glonek, J.; Zurawa, D.; Tanfani, F.; Scire, A.; Wawrzynow, A.; Narkiewicz, J.; Bertoli, E.; Lipinska, B.: The N-terminal region of HtrA heat shock protease from Escherichia coli is essential for stabilization of HtrA primary structure and maintaining of its oligomeric structure. Biochim. Biophys. Acta, 1649, 171–182 (2003)

    PubMed  CAS  Google Scholar 

  4. Cavard, D.: Role of DegP protease on levels of various forms of colicin A lysis protein. FEMS Microbiol. Lett., 125, 173–178 (1995)

    Article  PubMed  CAS  Google Scholar 

  5. Diaz-Torres, M.L.; Russell, R.R.: HtrA protease and processing of extracellular proteins of Streptococcus mutans. FEMS Microbiol. Lett., 204, 23–28 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. Skorko-Glonek, J.; Wawrzynow, A.; Krzewski, K.; Kurpierz, K.; Lipinska, B.: Site-directed mutagenesis of the HtrA (DegP) serine protease, whose proteolytic activity is indispensable for Escherichia coli survival at elevated temperatures. Gene, 163, 47–52 (1995)

    Article  PubMed  CAS  Google Scholar 

  7. Strauch, K.L.; Johnson, K.; Beckwith, J.: Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J. Bacteriol., 171, 2689–2696 (1989)

    PubMed  CAS  Google Scholar 

  8. Lipinska, B.; Zylicz, M.; Georgopoulos, C.: The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J. Bacteriol., 172, 1791–1797 (1990)

    PubMed  CAS  Google Scholar 

  9. Kolmar, H.; Waller, P.R.; Sauer, R.T.: The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. J. Bacteriol., 178, 5925–5929 (1996)

    PubMed  CAS  Google Scholar 

  10. Jones, C.H.; Dexter, P.; Evans, A.K.; Liu, C.; Hultgren, S.J.; Hruby, D.E.: Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J. Bacteriol., 184, 5762–5771 (2002)

    Article  PubMed  CAS  Google Scholar 

  11. Skorko-Glonek, J.; Krzewski, K.; Lipinska, B.; Bertoli, E.; Tanfani, F.: Comparison of the structure of wild-type HtrA heat shock protease and mutant HtrA proteins. A Fourier transform infrared spectroscopic study. J. Biol. Chem., 270, 11140–11146 (1995)

    Article  PubMed  CAS  Google Scholar 

  12. Skorko-Glonek, J.; Lipinska, B.; Krzewski, K.; Zolese, G.; Bertoli, E.; Tanfani, F.: HtrA heat shock protease interacts with phospholipid membranes and undergoes conformational changes. J. Biol. Chem., 272, 8974–8982 (1997)

    PubMed  CAS  Google Scholar 

  13. Spiers, A.; Lamb, H.K.; Cocklin, S.; Wheeler, K.A.; Budworth, J.; Dodds, A.L.; Pallen, M.J.; Maskell, D.J.; Charles, I.G.; Hawkins, A.R.: PDZ domains facilitate binding of high temperature requirement protease A (HtrA) and tail-specific protease (Tsp) to heterologous substrates through recognition of the small stable RNA A (ssrA)-encoded peptide. J. Biol. Chem., 277, 39443–39449 (2002)

    Article  PubMed  CAS  Google Scholar 

  14. Kim, D.Y.; Kim, D.R.; Ha, S.C.; Lokanath, N.K.; Lee, C.J.; Hwang, H.Y.; Kim, K.K.: Crystal structure of the protease domain of a heat-shock protein HtrA from Thermotoga maritima. J. Biol. Chem., 278, 6543–6551 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. Kim, K.I.; Park, S.C.; Kang, S.H.; Cheong, G.W.; Chung, C.H.: Selective degradation of unfolded proteins by the self-compartmentalizing HtrA protease, a periplasmic heat shock protein in Escherichia coli. J. Mol. Biol., 294, 1363–1374 (1999)

    Article  PubMed  CAS  Google Scholar 

  16. Clausen, T.; Southan, C.; Ehrmann, M.: The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell, 10, 443–455 (2002)

    Article  PubMed  CAS  Google Scholar 

  17. Laskowska, E.; Kuczynska-Wisnik, D.; Skorko-Glonek, J.; Taylor, A.: Degradation by proteases Lon, Clp and HtrA, of Escherichia coli proteins aggregated in vivo by heat shock; HtrA protease action in vivo and in vitro. Mol. Microbiol., 22, 555–571 (1996)

    Article  PubMed  CAS  Google Scholar 

  18. Pallen, M.J.; Wren, B.W.: The HtrA family of serine proteases. Mol. Microbiol., 26, 209–221 (1997)

    Article  PubMed  CAS  Google Scholar 

  19. Sassoon, N.; Arie, J.P.; Betton, J.M.: PDZ domains determine the native oligomeric structure of the DegP (HtrA) protease. Mol. Microbiol., 33, 583–589 (1999)

    Article  PubMed  CAS  Google Scholar 

  20. Poquet, I.; Saint, V.; Seznec, E.; Simoes, N.; Bolotin, A.; Gruss, A.: HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol. Microbiol., 35, 1042–1051 (2000)

    Article  PubMed  CAS  Google Scholar 

  21. Krojer, T.; Garrido-Franco, M.; Huber, R.; Ehrmann, M.; Clausen, T.: Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature, 416, 455–459 (2002)

    Article  PubMed  CAS  Google Scholar 

  22. Day, C.L.; Hinds, M.G.: HtrA-a renaissance protein. Structure, 10, 737–739 (2002)

    Article  PubMed  CAS  Google Scholar 

  23. Brondsted, L.; Andersen, M.T.; Parker, M.; Jorgensen, K.; Ingmer, H.: The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl. Environ. Microbiol., 71, 3205–3212 (2005)

    Article  PubMed  CAS  Google Scholar 

  24. Seol, J.H.; Woo, S.K.; Jung, E.M.; Yoo, S.J.; Lee, C.S.; Kim, K.J.; Tanaka, K.; Ichihara, A.; Ha, D.B.; Chung, C.H.: Protease Do is essential for survival of Escherichia coli at high temperatures: its identity with the htrA gene product. Biochem. Biophys. Res. Commun., 176, 730–736 (1991)

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, X.; Chang, Z.: Temperature dependent protease activity and structural properties of human HtrA2 protease. Biochemistry (Moscow), 69, 687–692 (2004)

    Article  CAS  Google Scholar 

  26. Nie, G.; Li, Y.; Salamonsen, L.A.: Serine protease HtrA1 is developmentally regulated in trophoblast and uterine decidual cells during placental formation in the mouse. Dev. Dyn., 233, 1102–1109 (2005)

    Article  PubMed  CAS  Google Scholar 

  27. Forns, N.; Juarez, A.; Madrid, C.: Osmoregulation of the HtrA (DegP) protease of Escherichia coli: An Hha″H-NS complex represses HtrA expression at low osmolarity. FEMS Microbiol. Lett., 251, 75–80 (2005)

    Article  PubMed  CAS  Google Scholar 

  28. Lyon, W.R.; Caparon, M.G.: Role for serine protease HtrA (DegP) of Streptococcus pyogenes in the biogenesis of virulence factors SpeB and the hemolysin streptolysin S. Infect. Immun., 72, 1618–1625 (2004)

    Article  PubMed  CAS  Google Scholar 

  29. Sebert, M.E.; Patel, K.P.; Plotnick, M.; Weiser, J.N.: Pneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system. J. Bacteriol., 187, 3969–3979 (2005)

    Article  PubMed  CAS  Google Scholar 

  30. Gupta, S.; Singh, R.; Datta, P.; Zhang, Z.; Orr, C.; Lu, Z.; Dubois, G.; Zervos, A.S.; Meisler, M.H.; Srinivasula, S.M.; Fernandes-Alnemri, T.; Alnemri, E.S.: The C-terminal tail of presenelin regulates Omi/HtrA2 protease activity. J. Biol. Chem., 279, 45844–45854 (2004)

    Article  PubMed  CAS  Google Scholar 

  31. De Luca, A.; De Falco, M.; Fedele, V.; Cobellis, L.; Mastrogiacomo, A.; Laforgia, V.; Tuduce, I.L.; Campioni, M.; Giraldi, D.; Paggi, M.G.; Baldi, A.: The serine protease HtrA1 is upregulated in the human placenta during pregnancy. J. Histochem. Cytochem., 52, 885–892 (2004)

    Article  PubMed  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Peptidase Do. In: Chang, A. (eds) Class 3 Hydrolases. Springer Handbook of Enzymes, vol S5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85703-7_47

Download citation

Publish with us

Policies and ethics