Skip to main content

A Constraint Method in Nonlinear Multi-Objective Optimization

  • Conference paper

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 618))

Abstract

We present a new method for generating a concise and representative approximation of the (weakly) efficient set of a nonlinear multi-objective optimization problem. For the parameter dependent ε-constraint scalarization an algorithm is given which allows an adaptive controlling of the parameters—the upper bounds—based on sensitivity results such that equidistant approximation points are generated. The proposed method is applied to a variety of test-problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt W (1991) Parametric optimization with applications to optimal control and sequential quadratic programming. Bayreuther Mathematische Schriften 35:1–37

    Google Scholar 

  2. Bijick E, Diehl D, Renz W (2006) Bikriterielle Optimierung des Hochfrequenzfeldes bei der Magnetresonanzbildung. In: Küfer KH et al (eds) Multicriteria decision making and fuzzy systems, theory, methods and applications. Shaker, Aachen, pp 85–98

    Google Scholar 

  3. Chankong V, Haimes YY (1983) Multiobjective decision making. Elsevier, Amsterdam

    Google Scholar 

  4. Collette Y, Siarry P (2005) Three new metrics to measure the convergence of metaheuristics towards the Pareto frontier and the aesthetic of a set of solutions in biobjective optimization. Comput Oper Res 32(4):773–792

    Article  Google Scholar 

  5. Das I, Dennis J (1998) Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657

    Article  Google Scholar 

  6. Ehrgott M (2000) Multicriteria optimisation. Springer, Berlin

    Google Scholar 

  7. Eichfelder G (2006) Parametergesteuerte Lösung nichtlinearer multikriterieller Optimierungs-probleme (in German). Dissertation, University of Erlangen-Nuremberg, Germany

    Google Scholar 

  8. Eichfelder G (2006) õ-constraint method with adaptive parameter control and an application to intensity-modulated radiotherapy. In: Küfer KH et al (eds) Multicriteria decision making and fuzzy systems, theory, methods and applications. Shaker, Aachen, pp 25–42

    Google Scholar 

  9. Fliege J (2006) An efficient interior-point method for convex multicriteria optimization problems. Math Oper Res 31(4):825–845

    Article  Google Scholar 

  10. Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1:296–297

    Article  Google Scholar 

  11. Hansen MP, Jaszkiewicz A (1998) Evaluating the quality of approximations to the non-dominated set. IMM Technical University of Denmark, Denmark, IMM-REP-1998-7

    Google Scholar 

  12. Hazen GB (1988) Differential characterizations of nonconical dominance in multiple objective decision making. Math Oper Res 13(1):174–189

    Article  Google Scholar 

  13. Hillermeier C, Jahn J (2005) Multiobjective optimization: survey of methods and industrial applications. Surv Math Ind 11:1–42

    Article  Google Scholar 

  14. Hwang C-L, Masud AS (1979) Multiple objective decision making - methods and applications. A state-of-the-art survey. Springer, Berlin

    Google Scholar 

  15. Jahn J, Merkel A (1992) Reference point approximation method for the solution of bicriterial nonlinear optimization problems. J Optim Theory Appl 74(1): 87–103

    Article  Google Scholar 

  16. Jahn J (2004) Vector optimization: theory, applications and extensions. Springer, Berlin

    Google Scholar 

  17. Kim IY, de Weck O (2005) Adaptive weighted sum method for bi-objective optimization. Struct Multidisciplinary Optim 29:149–158

    Article  Google Scholar 

  18. Knowles J, Corne D (2002) On metrics for comparing non-dominated sets. Proceedings of the World Congress on Computational Intelligence, pp 711–716

    Google Scholar 

  19. Luenberger DG (1973) Introduction to linear and nonlinear programming. Addison-Wesley, Reading, MA

    Google Scholar 

  20. Messac A, Mattson CA (2004) Normal constraint method with guarantee of even representation of complete Pareto frontier. AIAA J 42(1):2101–2111

    Article  Google Scholar 

  21. Miettinen KM (1999) Nonlinear multiobjective optimization. Kluwer, Boston

    Google Scholar 

  22. Pascoletti A, Serafini P (1984) Scalarizing vector optimization problems. J Optim Theory Appl 42(4):499–524

    Article  Google Scholar 

  23. Ruzika S, Wiecek MM (2005) Approximation methods in multiobjective programming. J Optim Theory Appl 126(3):473–501

    Article  Google Scholar 

  24. Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization. Academic Press, London

    Google Scholar 

  25. Sayin S (2003) Measuring the quality of discrete representations of efficient sets in multiple objective mathematical programming. Math Program 87(A):543–560

    Google Scholar 

  26. Schandl B, Klamroth K, Wiecek MM (2001) Norm-based approximation in bicriteria programming. Comput Optim Appl 20(1):23–42

    Article  Google Scholar 

  27. Steuer RE (1986) Multiple criteria optimization: theory, computation, and application. Wiley, New York

    Google Scholar 

  28. Tanaka M (1995) GA-based decision support system for multi-criteria optimization. Proc Int Conf Syst Man Cybern 2:1556–1561

    Google Scholar 

  29. Van Veldhuizen DA (1999) Multiobjective evolutionary algorithms: classifications, analyses, and new innovation. Dissertation, Graduate School of Engineering, Air Force Institute of Technology Dayton, Ohio, USA

    Google Scholar 

  30. Zadeh L (1963) Optimality and non-scalared-valued performance criteria. IEEE Trans. Autom Control 8:59–60

    Article  Google Scholar 

  31. Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and application. Dissertation, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eichfelder, G. (2009). A Constraint Method in Nonlinear Multi-Objective Optimization. In: Barichard, V., Ehrgott, M., Gandibleux, X., T'Kindt, V. (eds) Multiobjective Programming and Goal Programming. Lecture Notes in Economics and Mathematical Systems, vol 618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85646-7_1

Download citation

Publish with us

Policies and ethics