Skip to main content

Resonance Curves of Multidimensional Chaotic Systems

  • Chapter
  • 2108 Accesses

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We study resonance curves of nonlinear dynamical systems with chaotic forcing functions. We use the calculus of variations to determine the forcing function that induces the largest response. We compute the resonant forcing for a set of model systems and determine the response of the dynamical system to each forcing function. We show that the response is largest if the model system matches the dynamical system. We find that the signal to noise ratio is particularly large if one of the Lyapunov exponents is large.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, L. Frunzio, M. Metcalfe, C. Rigettiand, R. J. Schoelkopf, M. H. Devoret, D. Vion, et al., Phys. Rev. Lett. 94, 027005 (2005)

    Article  Google Scholar 

  2. R. L. Badzey and P. Mohanty, Nature 437, 962 (2005)

    Article  Google Scholar 

  3. C. Wargitsch and A. W. Hubler, Il Nuovo Cimiento 17D, 969 (1990)

    Google Scholar 

  4. S. Wimberger, R. Mannella, O. Morsch, and E. Arimondo, Phys. Rev. Lett. 94, 130404 (2005)

    Article  Google Scholar 

  5. T. Eisenhammer, A. W. Hubler, T. Geisel, and E. Luscher, Phys. Rev. A 41, 3332 (1990)

    Article  Google Scholar 

  6. L. E. Arsenault and A. W. Hubler, Phys. Rev. E 51, 3561 (1995)

    Article  MathSciNet  Google Scholar 

  7. G. Reiser, A. W. Hubler, and E. Luscher, Z. Naturforschung 42a, 803 (1987)

    Google Scholar 

  8. R. L. Kautz, Phys. Lett. A 125, 315 (1987)

    Article  Google Scholar 

  9. W. H. Fleming, Appl. Math. Optim. 4, 329 (1977)

    Article  MathSciNet  Google Scholar 

  10. P. D. Beale, Phys. Rev. A 40, 3998 (1989)

    Article  MathSciNet  Google Scholar 

  11. P. Grassberger, J. Phys. A: Math. Gen. 22, 3283 (1989)

    Article  MathSciNet  Google Scholar 

  12. K. Chang, A. Kodogeorgiou, A. W. Hubler, and E. A. Jackson, Physicsa D 51, 99 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. B. B. Plapp and A. W. Hubler, Phys. Rev. Lett. 65, 2302 (1990)

    Article  Google Scholar 

  14. S. Krempl, T. Eisenhammer, A. Hubler, G. Mayer-Kress, and P. W. Milonni, Phys. Rev. Lett. 69, 430 (1992)

    Article  Google Scholar 

  15. C. Wargitsch and A. Hubler, Phys. Rev. E 51, 1508 (1995)

    Article  MathSciNet  Google Scholar 

  16. R. Graham, A. Hamm, and T. Tel, Phys. Rev. Lett 66, 3089 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Beri, R. Mannella, D. G. Luchinsky, A. N. Silchenko, and P. V. E. McClintock, Phys. Rev. E 72, 036131 (2005)

    Article  MathSciNet  Google Scholar 

  18. G. Foster, A. W. Hubler, and K. Dahmen, Phys. Rev. E 75, 0036212 (2007)

    Article  MathSciNet  Google Scholar 

  19. V. N. Smelyanskiy and M. I. Dykman, Phys. Rev. E 55, 2516 (1997)

    Article  MathSciNet  Google Scholar 

  20. I. A. Khovanov, D. G. Luchinsky, R. Mannella, and P. V. E. McClintock, Phys. Rev. Lett. 85, 2100 (2000)

    Article  Google Scholar 

  21. J. Xu and A. W. Hubler, Phys. Rev. B 67, 184202 (2003)

    Article  Google Scholar 

  22. G. Paladin, M. Serva, and A. Vulpiani, Phys. Rev. Lett. 74, 66 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foster, G., Hübler, A.W., Dahmen, K. (2009). Resonance Curves of Multidimensional Chaotic Systems. In: In, V., Longhini, P., Palacios, A. (eds) Applications of Nonlinear Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85632-0_21

Download citation

Publish with us

Policies and ethics