Advertisement

The Displaced Harmonic Oscillator Model

  • Philipp Scherer
  • Sighart F. Fischer
Chapter
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

We would like now to discuss a more specific model for the transition between the vibrational manifolds. We apply the harmonic approximation for the nuclear motion which is described by Hamiltonians
$$ H_{g,e} = \sum\limits_r {\hbar \omega _r^{(g,e)} } b_r^{(g,e)} + b_r^{(g,e)} $$
(19.1)
and discuss the model of displaced oscillators.

Keywords

Correlation Function Harmonic Approximation Reorganization Energy Time Correlation Function Nuclear Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.L. Hill, An Introduction to Statistical Thermodynamics (Dover, New York, 1986)Google Scholar
  2. 2.
    S. Cocco, J.F. Marko, R. Monasson, arXiv:cond-mat/0206238v1Google Scholar
  3. 3.
    C. Storm, P.C. Nelson, Phys. Rev. E 67, 51906 (2003)MathSciNetADSGoogle Scholar
  4. 4.
    K.K. Mueller-Niedebock, H.L. Frisch, Polymer 44, 3151 (2003)Google Scholar
  5. 5.
    C. Leubner, Eur. J. Phys. 6, 299 (1985)zbMATHMathSciNetGoogle Scholar
  6. 6.
    P.J. Flory, J. Chem. Phys. 10, 51 (1942)ADSGoogle Scholar
  7. 7.
    M.L. Huggins, J. Phys. Chem. 46, 151 (1942)Google Scholar
  8. 8.
    M. Feig, C.L. Brooks III, Curr. Opin. Struct. Biol. 14, 217 (2004)Google Scholar
  9. 9.
    B. Roux, T. Simonson, Biophys. Chem. 78, 1 (1999)Google Scholar
  10. 10.
    A. Onufriev, Annu. Rep. Comput. Chem. 4, 125 (2008)Google Scholar
  11. 11.
    M. Born, Z. Phys. 1, 45 (1920)ADSGoogle Scholar
  12. 12.
    D. Bashford, D. Case, Annu. Rev. Phys. Chem. 51, 29 (2000)Google Scholar
  13. 13.
    W.C. Still, A. Tempczyk, R.C. Hawley, T. Hendrickson, JACS 112, 6127 (1990)Google Scholar
  14. 14.
    G.D. Hawkins, C.J. Cramer, D.G. Truhlar, Chem. Phys. Lett. 246, 122 (1995)ADSGoogle Scholar
  15. 15.
    M. Schaefer, M. Karplus, J. Phys. Chem. 100, 1578 (1996)Google Scholar
  16. 16.
    I.M. Wonpil, M.S. Lee, C.L. Brooks III, J. Comput. Chem. 24, 1691 (2003)Google Scholar
  17. 17.
    F. Fogolari, A. Brigo, H. Molinari, J. Mol. Recognit. 15, 377 (2002)Google Scholar
  18. 18.
    A.I. Shestakov, J.L. Milovich, A. Noy, J. Colloid Interface Sci. 247, 62 (2002)Google Scholar
  19. 19.
    B. Lu, D. Zhang, J.A. McCammon, J. Chem. Phys. 122, 214102 (2005)ADSGoogle Scholar
  20. 20.
    P. Koehl, Curr. Opin. Struct. Biol. 16, 142 (2006)Google Scholar
  21. 21.
    P. Debye, E. Hueckel, Phys. Z. 24, 305 (1923)Google Scholar
  22. 22.
    G. Goüy, Comt. Rend. 149, 654 (1909)Google Scholar
  23. 23.
    G. Goüy, J. Phys. 9, 457 (1910)Google Scholar
  24. 24.
    D.L. Chapman, Philos. Mag. 25, 475 (1913)Google Scholar
  25. 25.
    O. Stern, Z. Elektrochem. 30, 508 (1924)Google Scholar
  26. 26.
    A.-S. Yang, M. Gunner, R. Sampogna, K. Sharp, B. Honig, Proteins 15, 252 (1993)Google Scholar
  27. 27.
    P.W. Atkins, Physical Chemistry (Freeman, New York, 2006)Google Scholar
  28. 28.
    W.J. Moore, Basic Physical Chemistry (Prentice-Hall, New York, 1983)Google Scholar
  29. 29.
    M. Schaefer, M. Sommer, M. Karplus, J. Phys. Chem. B 101, 1663 (1997)Google Scholar
  30. 30.
    R.A. Raupp-Kossmann, C. Scharnagl, Chem. Phys. Lett. 336, 177 (2001)ADSGoogle Scholar
  31. 31.
    H. Risken, The Fokker–Planck Equation (Springer, Berlin, 1989)zbMATHGoogle Scholar
  32. 32.
    H.A. Kramers, Physica 7, 284 (1941)MathSciNetADSGoogle Scholar
  33. 33.
    P.O.J. Scherer, Chem. Phys. Lett. 214, 149 (1993)ADSGoogle Scholar
  34. 34.
    E.W. Montroll, H. Scher, J. Stat. Phys. 9, 101 (1973)ADSGoogle Scholar
  35. 35.
    E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)MathSciNetADSGoogle Scholar
  36. 36.
    A.A. Zharikov, P.O.J. Scherer, S.F. Fischer, J. Phys. Chem. 98, 3424 (1994)Google Scholar
  37. 37.
    A.A. Zharikov, S.F. Fischer, Chem. Phys. Lett. 249, 459 (1995)ADSGoogle Scholar
  38. 38.
    S.R. de Groot, P. Mazur, Irreversible Thermodynamics (Dover, New York, 1984)Google Scholar
  39. 39.
    D.G. Miller, Faraday Discuss. Chem. Soc. 64, 295 (1977)Google Scholar
  40. 40.
    R. Paterson, Faraday Discuss. Chem. Soc. 64, 304 (1977)Google Scholar
  41. 41.
    D.E. Goldman, J. Gen. Physiol. 27, 37 (1943)Google Scholar
  42. 42.
    A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)Google Scholar
  43. 43.
    J. Kenyon, How to solve and program the Hodgkin–Huxley equations (http://134.197.54.225/department/Faculty/kenyon/Hodgkin&Huxley/pdfs/HH.Program.pdf)
  44. 44.
    J. Vreeken, A friendly introduction to reaction–diffusion systems, Internship Paper, AILab, Zurich, July 2002Google Scholar
  45. 45.
    E. Pollak, P. Talkner, Chaos 15, 026116 (2005)MathSciNetADSGoogle Scholar
  46. 46.
    F.T. Gucker, R.L. Seifert, Physical Chemistry (W.W. Norton, New York, 1966)Google Scholar
  47. 47.
    S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Processes (McGraw-Hill, New York, 1941)Google Scholar
  48. 48.
    K.J. Laidler, Chemical Kinetics, 3rd edn. (Harper & Row, New York, 1987)Google Scholar
  49. 49.
    G.A. Natanson, J. Chem. Phys. 94, 7875 (1991)ADSGoogle Scholar
  50. 50.
    R.A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964)ADSGoogle Scholar
  51. 51.
    R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811, 265 (1985)Google Scholar
  52. 52.
    R.A. Marcus, Angew. Chem. Int. Ed. Engl. 32, 1111 (1993)Google Scholar
  53. 53.
    A.M. Kuznetsov, J. Ulstrup, Electron Transfer in Chemistry and Biology (Wiley, Chichester, 1998), p. 49Google Scholar
  54. 54.
    P.W. Anderson, J. Phys. Soc. Jpn. 9, 316 (1954)ADSGoogle Scholar
  55. 55.
    R. Kubo, J. Phys. Soc. Jpn. 6, 935 (1954)MathSciNetADSGoogle Scholar
  56. 56.
    R. Kubo, in Fluctuations, Relaxations and Resonance in Magnetic Systems, ed. by D. ter Haar (Plenum, New York, 1962)Google Scholar
  57. 57.
    T.G. Heil, A. Dalgarno, J. Phys. B 12, 557 (1979)ADSGoogle Scholar
  58. 58.
    L.D. Landau, Phys. Z. Sowjetun. 1, 88 (1932)zbMATHGoogle Scholar
  59. 59.
    C. Zener, Proc. R. Soc. Lond. A 137, 696 (1932)zbMATHADSGoogle Scholar
  60. 60.
    E.S. Kryachko, A.J.C. Varandas, Int. J. Quant. Chem. 89, 255 (2001)Google Scholar
  61. 61.
    E.N. Economou, Green’s Functions in Quantum Physics (Springer, Berlin, 1978)Google Scholar
  62. 62.
    H. Scheer, W.A. Svec, B.T. Cope, M.H. Studler, R.G. Scott, J.J. Katz, JACS 29, 3714 (1974)Google Scholar
  63. 63.
    A. Streitwieser, Molecular Orbital Theory for Organic Chemists (Wiley, New York, 1961)Google Scholar
  64. 64.
    J.E. Lennard-Jones, Proc. R. Soc. Lond. A 158, 280 (1937)ADSGoogle Scholar
  65. 65.
    B.S. Hudson, B.E. Kohler, K. Schulten, in Excited States, ed. by E.C. Lin (Academic, New York, 1982), pp. 1–95Google Scholar
  66. 66.
    B.E. Kohler, C. Spangler, C. Westerfield, J. Chem. Phys. 89, 5422 (1988)ADSGoogle Scholar
  67. 67.
    T. Polivka, J.L. Herek, D. Zigmantas, H.-E. Akerlund, V. Sundstrom, Proc. Natl. Acad. Sci. USA 96, 4914 (1999)ADSGoogle Scholar
  68. 68.
    B. Hudson, B. Kohler, Synth. Met. 9, 241 (1984)Google Scholar
  69. 69.
    B.E. Kohler, J. Chem. Phys. 93, 5838 (1990)ADSGoogle Scholar
  70. 70.
    W.T. Simpson, J. Chem. Phys. 17, 1218 (1949)ADSGoogle Scholar
  71. 71.
    H. Kuhn, J. Chem. Phys. 17, 1198 (1949)ADSGoogle Scholar
  72. 72.
    M. Gouterman, J. Mol. Spectrosc. 6, 138 (1961)ADSGoogle Scholar
  73. 73.
    M. Gouterman, J. Chem. Phys. 30, 1139 (1959)ADSGoogle Scholar
  74. 74.
    M. Gouterman, G.H. Wagniere, L.C. Snyder, J. Mol. Spectrosc. 11, 108 (1963)ADSGoogle Scholar
  75. 75.
    C. Weiss, The Porphyrins, vol. III (Academic, New York, 1978), p. 211Google Scholar
  76. 76.
    D. Spangler, G.M. Maggiora, L.L. Shipman, R.E. Christofferson, J. Am. Chem. Soc. 99, 7470 (1977)Google Scholar
  77. 77.
    B.R. Green, D.G. Durnford, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 685 (1996)Google Scholar
  78. 78.
    H.A. Frank et al., Pure Appl. Chem. 69, 2117 (1997)Google Scholar
  79. 79.
    R.J. Cogdell et al., Pure Appl. Chem. 66, 1041 (1994)Google Scholar
  80. 80.
    H. van Amerongen, R. van Grondelle, J. Phys. Chem. B 105, 604 (2001)Google Scholar
  81. 81.
    T. Frster, Ann. Phys. 2, 55 (1948)Google Scholar
  82. 82.
    T. Frster, Disc. Faraday Trans. 27, 7 (1965)Google Scholar
  83. 83.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953)ADSGoogle Scholar
  84. 84.
    F.J. Kleima, M. Wendling, E. Hofmann, E.J.G. Peterman, R. van Grondelle, H. van Amerongen, Biochemistry 39, 5184 (2000)Google Scholar
  85. 85.
    T. Pullerits, M. Chachisvilis, V. Sundstrm, J. Phys. Chem. 100, 10787 (1996)Google Scholar
  86. 86.
    R.C. Hilborn, Am. J. Phys. 50, 982 (1982), revised 2002Google Scholar
  87. 87.
    S.H. Lin, Proc. R. Soc. Lond. A 335, 51 (1973)ADSGoogle Scholar
  88. 88.
    S.H. Lin, W.Z. Xiao, W. Dietz, Phys. Rev. E 47, 3698 (1993)ADSGoogle Scholar
  89. 89.
    MOLEKEL 4.0, P. Fluekiger, H.P. Luethi, S. Portmann, J. Weber, Swiss National Supercomputing Centre CSCS, Manno Switzerland, 2000Google Scholar
  90. 90.
    J. Deisenhofer, H. Michel, Science 245, 1463 (1989)ADSGoogle Scholar
  91. 91.
    J. Deisenhofer, O. Epp, K. Miki, R. Huber, H. Michel, Nature 318, 618 (1985)ADSGoogle Scholar
  92. 92.
    J. Deisenhofer, O. Epp, K. Miki, R. Huber, H. Michel, J. Mol. Biol. 180, 385 (1984)Google Scholar
  93. 93.
    H. Michel, J. Mol. Biol. 158, 567 (1982)Google Scholar
  94. 94.
    E.W. Knapp, P.O.J. Scherer, S.F. Fischer, BBA 852, 295 (1986)Google Scholar
  95. 95.
    P.O.J. Scherer, S.F. Fischer, in Chlorophylls, ed. by H. Scheer (CRC, Boca Raton, 1991), pp. 1079–1093Google Scholar
  96. 96.
    R.J. Cogdell, A. Gall, J. Koehler, Q. Rev. Biophys. 39, 227 (2006)Google Scholar
  97. 97.
    M. Ketelaars et al., Biophys. J. 80, 1591 (2001)ADSGoogle Scholar
  98. 98.
    M. Matsushita et al., Biophys. J. 80, 1604 (2001)ADSGoogle Scholar
  99. 99.
    K. Sauer, R.J. Cogdell, S.M. Prince, A. Freer, N.W. Isaacs, H. Scheer, Photochem. Photobiol. 64, 564 (1996)Google Scholar
  100. 100.
    A. Freer, S. Prince, K. Sauer, M. Papitz, A. Hawthorntwaite-Lawless, G. McDermott, R. Cogdell, N.W. Isaacs, Structure 4, 449 (1996)Google Scholar
  101. 101.
    M.Z. Papiz, S.M. Prince, A. Hawthorntwaite-Lawless, G. McDermott, A. Freer, N.W. Isaacs, R.J. Cogdell, Trends Plant Sci. 1, 198 (1996)Google Scholar
  102. 102.
    G. McDermott, S.M. Prince, A. Freer, A. Hawthorntwaite-Lawless, M. Papitz, R. Cogdell, Nature 374, 517 (1995)ADSGoogle Scholar
  103. 103.
    N.W. Isaacs, R.J. Cogdell, A. Freer, S.M. Prince, Curr. Opin. Struct. Biol. 5, 794 (1995)Google Scholar
  104. 104.
    E.E. Abola, F.C. Bernstein, S.H. Bryant, T.F. Koetzle, J. Weng, in Crystallographic Databases – Information Content, Software Systems, Scientific Applications, ed. by F.H. Allen, G. Bergerhoff, R. Sievers (Data Commission of the International Union of Crystallography, Cambridge, 1987), p. 107Google Scholar
  105. 105.
    F.C. Bernstein, T.F. Koetzle, G.J.B. Williams, E.F. Meyer Jr., M.D. Brice, J.R. Rodgers, O. Kennard, T. Shimanouchi, M. Tasumi, J. Mol. Biol. 112, 535 (1977)Google Scholar
  106. 106.
    R. Sayle, E.J. Milner-White, Trends Biochem. Sci. 20, 374 (1995)Google Scholar
  107. 107.
    Y. Zhao, M.-F. Ng, G.H. Chen, Phys. Rev. E 69, 032902 (2004)ADSGoogle Scholar
  108. 108.
    A.M. van Oijen, M. Ketelaars, J. Khler, T.J. Aartsma, J. Schmidt, Science 285, 400 (1999)Google Scholar
  109. 109.
    C. Hofmann, T.J. Aartsma, J. Khler, Chem. Phys. Lett. 395, 373 (2004)ADSGoogle Scholar
  110. 110.
    S.E. Dempster, S. Jang, R.J. Silbey, J. Chem. Phys. 114, 10015 (2001)ADSGoogle Scholar
  111. 111.
    S. Jang, R.J. Silbey, J. Chem. Phys. 118, 9324 (2003)ADSGoogle Scholar
  112. 112.
    K. Mukai, S. Abe, Chem. Phys. Lett. 336, 445 (2001)ADSGoogle Scholar
  113. 113.
    R.G. Alden, E. Johnson, V. Nagarajan, W.W. Parson, C.J. Law, R.G. Cogdell, J. Phys. Chem. B 101, 4667 (1997)Google Scholar
  114. 114.
    V. Novoderezhkin, R. Monshouwer, R. van Grondelle, Biophys. J. 77, 666 (1999)Google Scholar
  115. 115.
    M.K. Sener, K. Schulten, Phys. Rev. E 65, 31916 (2002)ADSGoogle Scholar
  116. 116.
    A. Warshel, S. Creighton, W.W. Parson, J. Phys. Chem. 92, 2696 (1988)Google Scholar
  117. 117.
    M. Plato, C.J. Winscom, in The Photosynthetic Bacterial Reaction Center, ed. by J. Breton, A. Vermeglio (Plenum, New York, 1988), p. 421Google Scholar
  118. 118.
    P.O.J. Scherer, S.F. Fischer, Chem. Phys. 131, 115 (1989)ADSGoogle Scholar
  119. 119.
    L.Y. Zhang, R.A. Friesner, Proc. Natl. Acad. Sci. USA 95, 13603 (1998)ADSGoogle Scholar
  120. 120.
    M. Gutman, Structure 12, 1123 (2004)Google Scholar
  121. 121.
    P. Mitchell, Biol. Rev. Camb. Philos. Soc. 41, 445 (1966)Google Scholar
  122. 122.
    H. Luecke, H.-T. Richter, J.K. Lanyi, Science 280, 1934 (1998)ADSGoogle Scholar
  123. 123.
    R. Neutze et al., BBA 1565, 144 (2002)Google Scholar
  124. 124.
    D. Borgis, J.T. Hynes, J. Chem. Phys. 94, 3619 (1991)ADSGoogle Scholar
  125. 125.
    F. Juelicher, in Transport and Structure: Their Competitive Roles in Biophysics and Chemistry, ed. by S.C. Mller, J. Parisi, W. Zimmermann. Lecture Notes in Physics (Springer, Berlin, 1999)Google Scholar
  126. 126.
    A. Parmeggiani, F. Juelicher, A. Ajdari, J. Prost, Phys. Rev. E 60, 2127 (1999)ADSGoogle Scholar
  127. 127.
    F. Jlicher, A. Ajdari, J. Prost, Rev. Mod. Phys. 69, 1269 (1997)ADSGoogle Scholar
  128. 128.
    F. Jlicher, J. Prost, Progr. Theor. Phys. Suppl. 130, 9 (1998)ADSGoogle Scholar
  129. 129.
    H. Qian, J. Math. Chem. 27, 219 (2000)zbMATHMathSciNetGoogle Scholar
  130. 130.
    M.E. Fisher, A.B. Kolomeisky, arXiv:cond-mat/9903308v1Google Scholar
  131. 131.
    N.D. Mermin, J. Math. Phys. 7, 1038 (1966)MathSciNetADSGoogle Scholar
  132. 132.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.J. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery J. Comput. Chem. 14, 1347 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Physics Department T38Technical University MünchenMünchenGermany

Personalised recommendations