Computing Argumentation for Decision Making in Legal Disputes

  • Maxime Morge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4884)

Abstract

In this paper, we present a decision support system for lawyers. This system is built upon an argumentation framework for decision making. A logic language is used as a concrete data structure for holding the statements like knowledge, goals, and decisions. Different priorities are attached to these items corresponding to the uncertainty of the knowledge about the circumstances, the lawyer’s preferences, and the expected utilities of sentences. These concrete data structures consist of information providing the backbone of arguments. Due to the abductive nature of practical reasoning, arguments are built by reasoning backwards, and possibly by making suppositions over missing information. Moreover, arguments are defined as tree-like structures. In this way, our computer system, implemented in Prolog, suggests some actions and provides an interactive and intelligible explanation of this solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prakken, H., Sartor, G.: The role of logic in computational models of legal argument: a critical survey. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 343–380. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bench-Capon, T., Prakken, H.: Justifying actions by accruing arguments. In: Proc. of the 1st International Conference on Computational Models of Argument, pp. 247–258. IOS Press, Amsterdam (2006)Google Scholar
  3. 3.
    Clemen, R.T.: Making Hard Decisions. Duxbury Press (1996)Google Scholar
  4. 4.
    Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Annals of Maths and AI 34(1-3), 197–215 (2002)MATHMathSciNetGoogle Scholar
  5. 5.
    Schweimeier, R., Schroeder, M.: Notions of attack and justified arguments for extended logic programs. In: van Harmelen, F. (ed.) Proc. of the 15th European Conference on Artificial Intelligence (ECAI), pp. 536–540. IOS Press, Amsterdam (2002)Google Scholar
  6. 6.
    Vreeswijk, G.: Abstract argumentation systems. Artificial Intelligence 90(1-2), 225–279 (1997)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation. Artificial Intelligence, Special Issue on Argumentation in Artificial Intelligence 171(10-15), 642–674 (2007)MathSciNetGoogle Scholar
  9. 9.
    Vreeswijk, G., Prakken, H.: Credulous and sceptical argument games for preferred semantics. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 239–253. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Gartner, D., Toni, F.: CaSAPI: a system for credulous and sceptical argumentation. In: Simari, G., Torroni, P. (eds.) Proc. of Workshop on Argumentation for Non-monotonic Reasoning, pp. 80–95 (2007)Google Scholar
  11. 11.
    Dung, P.M., Kowalski, R.A., Toni, F.: Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence 170(2), 114–159 (2006)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fox, J., Parsons, S.: On using arguments for reasoning about actions and values. In: Doyle, J., Thomason, R.H. (eds.) Proceedings of the Working Papers of the AAAI Spring Symposium on Qualitative Preferences in Deliberation and Practical Reasoning, pp. 55–63. Standford, Menlo Park (1997)Google Scholar
  13. 13.
    Oliver, R.M., Smith, J.Q.: Influence Diagrams, Belief Nets and Decision Analysis. John Wiley and Sons, Chichester (1988)Google Scholar
  14. 14.
    Raz, J. (ed.): Practical Reasoning. Oxford University Press, Oxford (1978)Google Scholar
  15. 15.
    Leila Amgoud, S.K.: On the generation of bipolar goals in argumentation-based negotiation. In: Rahwan, I., Moraïtis, P., Reed, C. (eds.) ArgMAS 2004. LNCS (LNAI), vol. 3366, pp. 192–207. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Thomason, R.H.: Desires and defaults: A framework for planning with inferred goals. In: Proc. of the seventh International Confenrence on Principle of Knowledge Representation and Reasoning (KR), pp. 702–713 (2000)Google Scholar
  17. 17.
    Hulstijn, J., van der Torre, L.W.N.: Combining goal generation and planning in an argumentation framework. In: Proc. of the 9h International Workshop on Non-Monotonic Reasoning (NMR), pp. 212–218 (2004)Google Scholar
  18. 18.
    Rahwan, I., Amgoud, L.: An argumentation-based approach for practical reasoning. In: Proc. of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), Hakodate, Japan, pp. 347–354. ACM Press, New York (2006)CrossRefGoogle Scholar
  19. 19.
    Guillermo, R., Simari, A.J., García, M.C.: Actions, planning and defeasible reasoning. In: Proc. of the 10th International Workshop on Non-Monotonic Reasoning (NMR), Whistler BC, Canada, pp. 377–384 (2004)Google Scholar
  20. 20.
    Kakas, A., Moraitis, P.: Argumentative-based decision-making for autonomous agents. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 883–890. ACM Press, New York (2003)CrossRefGoogle Scholar
  21. 21.
    Atkinson, K., Bench-Capon, T., McBurney, P.: Computational representation of practical argument. Synthese, special issue on Knowledge, Rationality and Action 152(2), 157–206 (2006)MATHMathSciNetGoogle Scholar
  22. 22.
    Ouerdane, W., Maudet, N., Tsoukias, A.: Arguing over actions that involve multiple criteria: A critical review. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 308–319. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Amgoud, L., Prade, H.: Comparing decisions in an argumentation-based setting. In: Proc. of the 11th International Workshop on Non-Monotonic Reasoning (NMR), Session on Argumentation, Dialogue, and Decision Making, Lake District, UK, pp. 426–432 (2006)Google Scholar
  24. 24.
    Amgoud, L., Prade, H.: Explaining qualitative decision under uncertainty by argumentation. In: Proc. of the 21st National Conference on Artificial Intelligence (AAAI), Boston, pp. 16–20 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Maxime Morge
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations