Advertisement

LACAME 2006 pp 103-111 | Cite as

Structural, magnetic and hyperfine characterization of zinc-substituted magnetites

  • A. C. S. da CostaEmail author
  • I. G. de SouzaJr.
  • M. A. Batista
  • K. L. da Silva
  • J. V. Bellini
  • A. PaesanoJr.
Conference paper

Abstract

Nanosized Fe3 − x Zn x O4 powders were synthesized by co-precipitation and characterized by total chemical analysis, X-ray diffraction, magnetic susceptibility and Mössbauer spectroscopy. The results showed that, for x ≤ 0.15, the as-prepared samples are mostly zinc-substituted magnetites but have maghemite as a minor phase. For x ≥ 0.30, only the Fe3 − x Zn x O4 solid solution is found. Increasing the zinc content from the end concentration x = 0, increases the lattice parameter but smaller become the mean crystalline diameter and the magnetic susceptibility. In addition, the magnetic hyperfine fields of the iron sites in the spinel structure, A and B, decrease up to collapse at x ≤ 0.90.

Keywords

Spinels Isomorphous substitution Zn-substituted Mössbauer spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campbell, S.J., Kaczmarek, W.A., Hoffmann, M.: Hyperfine Interact. 126, 175 (2004)CrossRefADSGoogle Scholar
  2. 2.
    Benjamin, M., Hayes, K.F., Leckie, J.O.: J. Water Pollut. Control. Fed. 54, 1472 (1982)Google Scholar
  3. 3.
    Cornell, R.M., Schwertmann, U.: The iron oxides: Structure, properties, reactions, occurrence and uses. Verlag Chemie, Weinheim (1996)Google Scholar
  4. 4.
    Murad, E., Johnston, J.H.: Iron oxides and oxyhydroxides. In: Long, G.J. (ed.) Mössbauer spectroscopy applied to inorganic chemistry, p. 507. Plenum Publ. Corp., New York (1987)Google Scholar
  5. 5.
    Yu, L., Cao, S., Wang, J., Jing, C., Zhang, J.: J. Magn. Magn. Mater. 301, 100 (2006)CrossRefADSGoogle Scholar
  6. 6.
    Guaita, F.J., Beltrán, H., Cordoncillo, E., Carda, J.B., Escribano, P.: J. Eur. Cer. Soc. 19, 363 (1999)CrossRefGoogle Scholar
  7. 7.
    Li, F.S., Wang, L., Wang, J.B., Zhou, Q.G., Zhou, X.Z., Kumkel, H.P., Williams, G.: J. Magn. Magn. Mat. 268, 332 (2004)CrossRefADSGoogle Scholar
  8. 8.
    Amer, M.A., El Hiti, M.: J. Magn. Magn. Mat. 234, 118 (2001)CrossRefADSGoogle Scholar
  9. 9.
    Torres, F., Amigó, R., Asenjo, J., Krotenko, E., Tejada, J.: Chem. Mater. 12, 3060 (2000)CrossRefGoogle Scholar
  10. 10.
    Murad, E., Schwertmann, U.: Clays Clay Miner. 41, 111 (1993)CrossRefGoogle Scholar
  11. 11.
    Sorescu, M., Ihaila-Tarabasanu, D., Diamandescu, L.: App. Phys. Lett. 27, 2047 (1998)CrossRefADSGoogle Scholar
  12. 12.
    Pereira, S.L., Pfannes, H.D., Mendes Filho, A.A, Miranda Pinto, L.C.B. de and Chíncaro, M.A., Mat. Res. 2, 231 (1999)Google Scholar
  13. 13.
    Ko, T., Hyun, S., Yoon, H., Han, K., Oh, J.: IEEE Trans. Magn. 41, 3484 (2005)CrossRefADSGoogle Scholar
  14. 14.
    Wen, M., Li, Q., Li, Y.: J. Electron. Spectrosc. Relat. Phenom. N153, 65Google Scholar
  15. 15.
    Schwertmann, U., Cornell, R.M.: Iron oxides in the laboratory. Preparation and characterization. Verlag Chemie, New York (1991)Google Scholar
  16. 16.
    Dearing, J.: Environmental Magnetic Susceptibility. Using the Bartington MS2 System. Chi Publ., Kenilworth (1994)Google Scholar
  17. 17.
    Wolska, E., Wolniewicz, A.: Phys. Stat. Solid 104, 569 (1987)CrossRefADSGoogle Scholar
  18. 18.
    Costa, A.C.S.da, Bigham, J.M., Rhoton, F.E., Traina, S.J.: Clays Clays Min. 47, 466 (1999)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • A. C. S. da Costa
    • 1
    Email author
  • I. G. de SouzaJr.
    • 1
  • M. A. Batista
    • 1
  • K. L. da Silva
    • 2
  • J. V. Bellini
    • 2
  • A. PaesanoJr.
    • 2
  1. 1.Departamento de AgronomiaUniversidade Estadual de MaringáMaringáBrazil
  2. 2.Departamento de FísicaUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations