Advertisement

LACAME 2006 pp 63-70 | Cite as

Study of the effect of Mn and Cu in Fe–Mn–Al–C–Cu alloys by ICEMS and XRD

  • J. D. Betancur-RíosEmail author
  • J. A. Tabares
  • G. A. Pérez Alcázar
  • V. F. Rodríguez
Conference paper

Abstract

Experimental analysis of magnetic and structural properties of Fe–Mn–Al–C–Cu alloys with compositions Fe x Mn0.915 − x Al0.075C0.01 (series A) and Fe x Mn0.912 − x Al0.075C0.01Cu0.003 (series B), 0.500 ≤ x ≤ 0.800, in steps of 0.050 is presented and discussed. The analysis was performed by integral conversion electrons Mössbauer spectrometry and X-ray diffraction at room temperature. The results suggest, for both series of alloys, that for the highest Mn content, samples exhibit an antiferromagnetic behavior, typical of the FCC or austenite FeMn phase rich in Mn; for those of low Mn content, the coexistence of paramagnetic austenite, typical of the FeMn alloy poor in Mn, a ferromagnetic BCC or ferrite phases can be observed, while for the lowest Mn content, only ferromagnetic (FM) phase tends to prevail. The FM phase is associated to the BCC FeMnAl as was corroborated by X-ray diffraction. The samples with the highest Mn content, the influence of Cu addition is to reduce the mean hyperfine field and to stabilize the antiferromagnetic behavior.

Keywords

Fe–Mn–Al–C alloys Mössbauer spectrometry XRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pérez Alcázar, G.A.: Rev. Acad. Colomb. Cienc. XXVIII, (107), 265 (2004)Google Scholar
  2. 2.
    Rodríguez, V.F., Jiménez, J.A., Adeva, P., Bohórquez, A., Pérez, G.A., Fernández, B.J., Chao, J.: Rev. Metal. Madrid 34, 362 (1998)Google Scholar
  3. 3.
    Tjong, S.C., Swart, H.C.: Appl. Surf. Sci. 47, 311 (1991)CrossRefADSGoogle Scholar
  4. 4.
    Pérez, P., Pérez, F.J., Gómez, C., Adeva, P.: Corros. Sci. 44, 113 (2002)CrossRefGoogle Scholar
  5. 5.
    Cruz, B., Pérez Alcázar, G.A., Aguilar, Y.: Hyperfine Interact. 4, 115 (1999)Google Scholar
  6. 6.
    Pérez Alcázar, G.A., Galvao da Silva, E., Paduani, C.: Hyperfine. Interact. 66, 221 (1991)CrossRefADSGoogle Scholar
  7. 7.
    Jen, S.U., Yao, Y.D., Huang, P.M., Lee, C.C., Chang, S.C.: J. Appl. Phys. 67, (9), 4835 (1990)CrossRefADSGoogle Scholar
  8. 8.
    Brand, R.A.: Nucl. Instrum. Methods Phys. Res. B 28, 417 (1987)CrossRefADSGoogle Scholar
  9. 9.
    MAUD program, Material Analysis Using Diffraction by L. Lutterotti. Version 2.046 (21 July 2006). Avalaible from http://www.ing.unitn.it/~maud/
  10. 10.
    Askelan, D.R., Phulé, P.P.: Essentials of Materials Science and Engineering, p. 105. Thomson, Canada (2004)Google Scholar
  11. 11.
    Chakrabarti, D.J.: Metall. Trans. B 8, 121 (1977)CrossRefGoogle Scholar
  12. 12.
    Umebayashi, H., Ishikawa, Y.: J. Phys. Soc. Jpn. 21(No. 7) (1966), JulyGoogle Scholar
  13. 13.
    Ishikawa, Y., Endoh, Y.: J. Phys. Soc. Jpn. 23(No. 2) (1967), AugustGoogle Scholar
  14. 14.
    Hashimoto, T., Ishikawa, V.: J. Phys. Soc. Jpn. 23(No. 2) (1967), AugustGoogle Scholar
  15. 15.
    Bruna, P., Pradell, T., Crespo, D., Garcia-Mateo, C., Bhadeshia, H.K.D.H.: In: Garcia, M., Marco, J.F., Plazaola, F. (eds.) Industrial Applications of Mössbauer Effect, pp. 338–343. American Institute of Physics (2005)Google Scholar
  16. 16.
    Blachoswi, A., Ruebenbauer, K., Jura, J., Bonarski, J.T., Baudin, T., Penelle, R.: Nukleonica 48, (Supplement I), S9–S12 (2003)Google Scholar
  17. 17.
    Pérez Alcázar, G.A., Plascak, J.A., Galvão da Silva, E.: Phys. Rev. B 2816 (1988)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • J. D. Betancur-Ríos
    • 1
    Email author
  • J. A. Tabares
    • 1
  • G. A. Pérez Alcázar
    • 1
  • V. F. Rodríguez
    • 1
  1. 1.Departamento de FísicaUniversidad del ValleCaliColombia

Personalised recommendations