Skip to main content

Computing the Cassels Pairing on Kolyvagin Classes in the Shafarevich-Tate Group

  • Conference paper
Pairing-Based Cryptography – Pairing 2008 (Pairing 2008)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5209))

Included in the following conference series:

  • 890 Accesses

Abstract

Kolyvagin has shown how to study the Shafarevich-Tate group of elliptic curves over imaginary quadratic fields via Kolyvagin classes constructed from Heegner points. One way to produce explicit non-trivial elements of the Shafarevich-Tate group is by proving that a locally trivial Kolyvagin class is globally non-trivial, which is difficult in practice. We provide a method for testing whether an explicit element of the Shafarevich-Tate group represented by a Kolyvagin class is globally non-trivial by determining whether the Cassels pairing between the class and another locally trivial Kolyvagin class is non-zero. Our algorithm explicitly computes Heegner points over ring class fields to produce the Kolyvagin classes and uses the efficiently computable cryptographic Tate pairing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over \(\bold Q\): wild 3-adic exercises. J. Amer. Math. Soc. 14(4), 843–939 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohen, H.: Number Theory Volume I: Tools and Diophantine equations. Graduate Texts in Mathematics, vol. 239. Springer, New York (2007), http://math.arizona.edu/~swc/notes/files/06CohenExtract.pdf

    Google Scholar 

  4. Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman and Hall, CRC (2006)

    Google Scholar 

  5. Cremona, J.E.: Elliptic curves of conductor ≤ 25000, http://www.warwick.ac.uk/~masgaj/ftp/data/INDEX.html

  6. Elkies, N.: Heegner point computations. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 122–133. Springer, Heidelberg (1994)

    Google Scholar 

  7. Eisenträger, K., Lauter, K., Montgomery, P.L.: Improved Weil and Tate pairings for elliptic and hyperelliptic curves. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 169–183. Springer, Heidelberg (2004)

    Google Scholar 

  8. Frey, G.: Applications of arithmetical geometry to cryptographic constructions. In: Finite fields and applications (Augsburg, 1999), pp. 128–161. Springer, Berlin (2001)

    Google Scholar 

  9. Frey, G., Lange, T.: Mathematical background of public key cryptography. In: Frey, G., Lange, T. (eds.) Arithmetic, geometry and coding theory (AGCT 2003), Soc. Math. France, Paris. Sémin. Congr., vol. 11, pp. 41–73 (2005)

    Google Scholar 

  10. Grigorov, G., Jorza, A., Patrikis, S., Stein, W., Tarniţǎ-Patraşcu, C.: Verification of the Birch and Swinnerton-Dyer conjecture for specific elliptic curves (preprint)

    Google Scholar 

  11. Gross, B.: Kolyvagin’s work on modular elliptic curves. In: L-functions and arithmetic (Durham, 1989), pp. 235–256. Cambridge Univ. Press, Cambridge (1991)

    Google Scholar 

  12. Gross, B., Zagier, D.: Heegner points and derivatives of L-series. Invent. Math. 84(2), 225–320 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jetchev, D., Lauter, K., Stein, W.: Explicit Heegner Points: Kolyvagin’s Conjecture and Non-trivial Elements in the Shafarevich-Tate group (preprint, 2007)

    Google Scholar 

  14. Jetchev, D., Stein, W.: Visualizing elements of the Shafarevich-Tate group at higher level (preprint)

    Google Scholar 

  15. Kolyvagin, V.A.: Euler systems. In: The Grothendieck Festschrift, vol. II, pp. 435–483. Birkhäuser, Boston (1990)

    Google Scholar 

  16. Lang, S.: Algebraic groups over finite fields. Amer. J. Math. 78, 555–563 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lichtenbaum, S.: Duality theorems for curves over p-adic fields. Inv. Math. 7, 120–136 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mazur, B., Rubin, K.: private communication

    Google Scholar 

  19. McCallum, W.G.: Kolyvagin’s work on Shafarevich-Tate groups. In: L-functions and arithmetic (Durham, 1989), pp. 295–316. Cambridge Univ. Press, Cambridge (1991)

    Google Scholar 

  20. Milne, J.S.: Arithmetic duality theorems. Academic Press Inc., Boston (1986)

    MATH  Google Scholar 

  21. Nekovar, J., Schappacher, N.: On the asymptotic behaviour of Heegner points. Turkish J. of Math. 23(4), 549–556 (1999)

    MATH  MathSciNet  Google Scholar 

  22. Serre, J.-P.: Local fields, GTM, vol. 67. Springer, New York (1979)

    Google Scholar 

  23. Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15(4), 259–331 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  24. Silverman, J.H.: The arithmetic of elliptic curves. Springer, New York (1992)

    Google Scholar 

  25. Silverman, J.H.: Advanced topics in the arithmetic of elliptic curves. Springer, New York (1994)

    MATH  Google Scholar 

  26. Stein, W.: SAGE, http://modular.math.washington.edu/sage/

  27. Watkins, M.: Some remarks on Heegner point computations (preprint, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Steven D. Galbraith Kenneth G. Paterson

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisenträger, K., Jetchev, D., Lauter, K. (2008). Computing the Cassels Pairing on Kolyvagin Classes in the Shafarevich-Tate Group. In: Galbraith, S.D., Paterson, K.G. (eds) Pairing-Based Cryptography – Pairing 2008. Pairing 2008. Lecture Notes in Computer Science, vol 5209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85538-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85538-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85503-3

  • Online ISBN: 978-3-540-85538-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics