Skip to main content

Validated Modeling of Mechanical Systems with SmartMOBILE: Improvement of Performance by ValEncIA-IVP

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5045))

Abstract

Computer simulations of real life processes can generate erroneous results, in many cases due to the use of finite precision arithmetic. To ensure correctness of the results obtained with the help of a computer, various kinds of validating arithmetic and algorithms were developed. Their purpose is to provide bounds in which the exact result is guaranteed to be contained. Verified modeling of kinematics and dynamics of multibody systems is a challenging application field for such methods, largely because of possible overestimation of the guaranteed bounds, leading to meaningless results.

In this paper, we discuss approaches to validated modeling of multibody systems and present a template-based tool SmartMOBILE, which features the possibility to choose an appropriate kind of arithmetic according to the modeling task. We consider different strategies for obtaining tight state enclosures in SmartMOBILE including improvements in the underlying data types (Taylor models), modeling elements (rotation error reduction), and focus on enhancement through the choice of initial value problem solvers (ValEncIA-IVP).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auer, E., Dyllong, E., Luther, W., Stankovic, D., Traczinski, H.: Integration of Accurate Distance Algorithms into a Modeling Tool for Multibody Systems. In: Proc. of IMACS (2005)

    Google Scholar 

  2. Auer, E., Kecskeméthy, A., Tändl, M., Traczinski, H.: Interval Algorithms in Modeling of Multibody Systems. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Dagstuhl Seminar 2003. LNCS, vol. 2991, pp. 132–159. Springer, Heidelberg (2004)

    Google Scholar 

  3. Auer, E.: Interval Modeling of Dynamics for Multibody Systems. Journal of Computational and Applied Mathematics 199(2), 251–256 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berz, M., Makino, K.: Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models. Reliable Computing 4, 361–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berz, M., Makino, K.: COSY INFINITY Version 8.1. User’s Guide and Reference Manual. Technical Report MSU HEP 20704, Michigan State University (2002)

    Google Scholar 

  6. Bendsten, C., Stauning, O.: FADBAD, a Flexible C++ Package for Automatic Differentiation Using the Forward and Backward Methods. Technical Report 1996-x5-94, Technical University of Denmark, Lyngby (1996)

    Google Scholar 

  7. Bendsten, C., Stauning, O.: TADIFF, a Flexible C++ Package for Automatic Differentiation Using Taylor Series. Technical Report 1997-x5-94, Technical University of Denmark, Lyngby (1997)

    Google Scholar 

  8. Deville, Y., Janssen, M., van Hentenryck, P.: Consistency Techniques for Ordinary Differential Equations. Constraint 7(3–4), 289–315 (2002)

    Article  MATH  Google Scholar 

  9. Griewank, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  10. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer, London (2001)

    MATH  Google Scholar 

  11. Kecskeméthy, A.: Objektorientierte Modellierung der Dynamik von Mehrkörpersystemen mit Hilfe von Übertragungselementen (in German). In: Fortschrittberichte VDI, Reihe 20 Nr. 88, VDI-Verlag, Düsseldorf (1993)

    Google Scholar 

  12. Kecskeméthy, A.: MOBILE Version 1.3. User’s Guide (1999)

    Google Scholar 

  13. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  14. Knüppel, O.: PROFIL/BIAS—A Fast Interval Library. Computing 53, 277–287 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Krasnochtanova, I.: Optimized Interval Algorithms for Simulation and Controller Design for Nonlinear Uncertain Systems Applied to Processes in Biological Wastewater Treatment, Master Thesis, University of Ulm (2005)

    Google Scholar 

  16. Lohner, R.: On the Ubiquity of the Wrapping Effect in the Computation of the Error Bounds. In: Kulisch, U., Lohner, R., Facius, A. (eds.) Perspectives on Enclosure Methods, pp. 201–217. Springer, Wien, New York (2001)

    Google Scholar 

  17. Lin, Y., Stadtherr, M.A.: Validated Solution of Initial Value Problems for ODEs with Interval Parameters. In: NSF Workshop Proceeding on Reliable Engineering Computing, Savannah GA, February 22-24 (2006)

    Google Scholar 

  18. Makino, K., Berz, M.: Suppression of the Wrapping Effect by Taylor Model-Based Validated Integrators. Technical Report MSU HEP 40910, Michigan State University (2004)

    Google Scholar 

  19. Nedialkov, N.S.: Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation. PhD thesis, University of Toronto (1999)

    Google Scholar 

  20. Nedialkov, N.S.: The Design and Implementation of an Object-Oriented Validated ODE Solver. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  21. Neumaier, A.: Taylor Forms — Use and Limits. Reliable Computing 9, 43–79 (2002)

    Article  MathSciNet  Google Scholar 

  22. Nedialkov, N.S., Mohrenschildt, M.v.: Rigorous Simulation of Hybrid Dynamic Systems with Symbolic and Interval Methods. In: Proc. of American Control Conference ACC, Anchorage, USA, pp. 140–147 (2002)

    Google Scholar 

  23. Rauh, A., Auer, E., Hofer, E.P.: ValEncIA-IVP: A Comparison with Other Initial Value Problem Solvers. In: CD-Proc. of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN 2006, Duisburg, Germany, IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  24. Rauh, A., Auer, E., Hofer, E.P.: A Novel Interval Method for Validating State Enclosures of the Solution of Initial Value Problems, Tachnical Report (2005), available online: http://vts.uni-ulm.de/doc.asp?id=6321

  25. Rihm, R.: Über Einschließungsverfahren für gewöhnliche Anfangswertprobleme und ihre Anwendung auf Differentialgleichungen mit unstetiger rechter Seite (in German). PhD thesis, University of Karlsruhe, Germany (1993)

    Google Scholar 

  26. Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P.: Application of Interval Arithmetic Simulation Techniques to Wastewater Treatment Processes. In: Proc. of Modelling, Identification, and Control MIC 2004, Grindelwald, Switzerland, pp. 287–293 (2004)

    Google Scholar 

  27. Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P.: Interval Methods for Simulation of Dynamical Systems with State-Dependent Switching Characteristics. In: Proc. of IEEE International Conference on Control Applications CCA 2006, Munich, Germany, pp. 355–360 (2006)

    Google Scholar 

  28. Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P.: Reduction of Overestimation in Interval Arithmetic Simulation of Biological Wastewater Treatment Processes. Journal of Computational and Applied Mathematics 199(2), 207–212 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Revol, N., Makino, K., Berz, M.: Taylor Models and Floating-Point Arithmetic: Proof that Arithmetic Operations are Validated in COSY. Journal of Logic and Algebraic Programming 64, 135–154 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rump, S.M.: Interval Computations with INTLAB. Brazilian Electronic Journal on Mathematics of Computation 1 (1999)

    Google Scholar 

  31. Rump, S.M.: INTLAB — INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  32. IEEE Computer Society. IEEE Standard for Binary Floating-Point Arithmetic. Technical Report IEEE Std. 754-1985, American National Standards Institute (1985), http://standards.ieee.org

  33. Traczinski, H.: Integration von Algorithmen und Datentypen zur validierten Mehrkörpersimulation in MOBILE (in German). PhD thesis, University of Duisburg-Essen (2006)

    Google Scholar 

  34. Vandevoorde, D., Josuttis, N.: C++ Templates. The Complete Guide. Addison-Wesley, Reading (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter Hertling Christoph M. Hoffmann Wolfram Luther Nathalie Revol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Auer, E., Rauh, A., Hofer, E.P., Luther, W. (2008). Validated Modeling of Mechanical Systems with SmartMOBILE: Improvement of Performance by ValEncIA-IVP . In: Hertling, P., Hoffmann, C.M., Luther, W., Revol, N. (eds) Reliable Implementation of Real Number Algorithms: Theory and Practice. Lecture Notes in Computer Science, vol 5045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85521-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85521-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85520-0

  • Online ISBN: 978-3-540-85521-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics