Archetype-Driven Character Dialogue Generation for Interactive Narrative

  • Jonathan P. Rowe
  • Eun Young Ha
  • James C. Lester
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5208)


Recent years have seen a growing interest in creating virtual agents to populate the cast of characters for interactive narrative. A key challenge posed by interactive characters for narrative environments is devising expressive dialogue generators. To be effective, character dialogue generators must be able to simultaneously take into account multiple sources of information that bear on dialogue, including character attributes, plot development, and communicative goals. Building on the narrative theory of character archetypes, we propose an archetype-driven character dialogue generator that uses a probabilistic unification framework to generate dialogue motivated by character personality and narrative history to achieve communicative goals. The generator’s behavior is illustrated with character dialogue generation in a narrative-centered learning environment, Crystal Island.


Agents in narrative 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Egri, L.: The Art of Dramatic Writing: Its Basis in the Creative Interpretation of Human Motives. Simon & Schuster, New York (1960)Google Scholar
  2. 2.
    Aylett, R., Figueiredo, R., Silva, A., Dias, J., Paiva, A.: Making It Up as You Go Along - Improvising Stories for Pedagogical Purposes. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 304–315. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Marsella, S., Johnson, W.L., LaBore, C.: Interactive Pedagogical Drama for Health Interventions. In: Proc. of AI in Education (AIED), pp. 341–348 (2003)Google Scholar
  4. 4.
    Gratch, J., Marsella, S.: A Domain-independent framework for modeling emotion. Journal of Cognitive Systems Research 5, 269–306 (2004)CrossRefGoogle Scholar
  5. 5.
    Riedl, M.O., Stern, A.: Believable Agents and Intelligent Story Adaptation for Interactive Storytelling. In: Proc. Tech. for Interactive Digital Storytelling and Entertainment, pp. 1–12 (2006)Google Scholar
  6. 6.
    Si, M., Marsella, S.C., Pynadath, D.V.: Thespian: Modeling Socially Normative Behavior in a Decision-Theoretic Framework. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 369–382. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Bates, J.: Virtual Reality, Art, and Entertainment. PRESENCE: Teleoperators and Virtual Environments 1, 133–138 (1992)Google Scholar
  8. 8.
    Cavazza, M., Charles, F.: Dialogue Generation in Character-based Interactive Storytelling. In: Proc., A.I. and Interactive Digital Entertainment (AIIDE), pp. 21–26 (2005)Google Scholar
  9. 9.
    Mateas, M., Stern, A.: Structuring Content in the Façade Interactive Drama Architecture. In: Proc. AI and Interactive Digital Entertainment (AIIDE), pp. 93–98 (2005)Google Scholar
  10. 10.
    Roberts, D., Isbell, C.: Desiderata for Managers of Interactive Experiences: A Survey of Recent Advances in Drama Management. In: Proc. AAMAS Wkshp on ABSHLE (2007)Google Scholar
  11. 11.
    Rowe, J., McQuiggan, S., Lester, J.: Narrative Presence in Intelligent Learning Environments. In: Proc. AAAI Fall Sym. on Intell. Narrative Tech., pp. 126–133 (2007)Google Scholar
  12. 12.
    Schmidt, V.L.: 45 Master Characters: Mythic Models for Creating Original Characters. Writer’s Digest Books: Cincinnati, OH (2001)Google Scholar
  13. 13.
    Loyall, A.B., Bates, J.: Personality-Rich Believable Agents That Use Language. In: Proc. Autonomous Agents, First International Conference, pp. 106–113 (1997)Google Scholar
  14. 14.
    Rizzo, P., Veloso, M., Miceli, M., Cesta, A.: Goal-based personalities and social behaviors in believable agents. Applied Artificial Intelligence 13, 239–271 (1999)CrossRefGoogle Scholar
  15. 15.
    Mosher, B., Magerko, B.: Personality Templates and Social Hierarchies Using Stereotypes. In: Proc. Tech. for Interactive Digital Storytelling and Entertainment, pp. 207–218 (2006)Google Scholar
  16. 16.
    Piwek, P., Hernault, H., Prendinger, H., Ishizuka, M.: T2D: Generating Dialogues Between Virtual Agents Automatically from Text. In: Pélachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 161–174. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Walker, M., Cahn, J., Whittaker, S.: Improvising Linguistic Style: Social and Affective Bases for Agent Personality. In: Proc. Auton. Agents, 1st Int. Conf., pp. 96–105 (1997)Google Scholar
  18. 18.
    Isard, A., Brockmann, C., Oberlander, J.: Individuality and Alignment in Generated Dialogues. In: Proc. Natural Lang. Generation, 4th Int., pp. 25–32 (2006)Google Scholar
  19. 19.
    Mairesse, F., Walker, M.: PERSONAGE: Personality Generation for Dialogue. In: Proc. 45th Annual Meeting of the Assoc. for Comp. Ling (ACL), pp. 496–503 (2007)Google Scholar
  20. 20.
    Mott, B., Lester, J.: U-Director: A Decision-Theoretic Narrative Planning Architecture for Storytelling Environments. In: Proc. AAMAS, pp. 977–984 (2006)Google Scholar
  21. 21.
    Kim, A.: Graded Unification: A Framework for Interactive Processing. In: Proc. 32nd Annual Meeting of the Association for Computational Linguistics, pp. 313–315 (1994)Google Scholar
  22. 22.
    Abney, S.: Stochastic Attribute-Value Grammars. Comp. Ling. 23, 597–618 (1997)MathSciNetGoogle Scholar
  23. 23.
    Johnson, M.: Learning and parsing stochastic unification-based grammars. In: Proc. Learning Theory and Kernel Machines (COLT / Kernel), pp. 671–683 (2003)Google Scholar
  24. 24.
    Hemphil, C., Picone, J.: Speech Recognition in a Unification Grammar Framework. In: Proc. ICASSP, pp. 723–726 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jonathan P. Rowe
    • 1
  • Eun Young Ha
    • 1
  • James C. Lester
    • 1
  1. 1.Department of Computer ScienceNorth Carolina State University RaleighUSA

Personalised recommendations