Computing Relaxed Answers on RDF Databases

  • Hai Huang
  • Chengfei Liu
  • Xiaofang Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5175)


Database users may be frustrated by no answers returned when they pose a query on the database. In this paper, we study the problem of relaxing queries on RDF databases in order to acquire approximate answers. We address two problems for efficient query relaxation. First, to ensure the quality of answers, we compute the similarities of relaxed queries with regard to the original query and use them to score the potential relevant answers. We also propose the algorithm to get most relevant answers as soon as possible. Second, to optimise query relaxation process, we characterize a type of unnecessary relaxed queries which do not contribute to the final results and propose the method to prune them from the query relaxation graph. At last, we implement and experimentally evaluate our approach.


RDF Database RDF Query Query Relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema. In: International Semantic Web Conference, pp. 54–68 (2002)Google Scholar
  3. 3.
    Guha, R.: rdfDB: An RDF Database,
  4. 4.
    SPARQL Query Language for RDF,
  5. 5.
    Hurtado, C.A., Poulovassilis, A., Wood, P.T.: A Relaxed Approach to RDF Querying. In: International Semantic Web Conference, pp. 314–328 (2006)Google Scholar
  6. 6.
    Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In: PODS (2001)Google Scholar
  7. 7.
    Fagin, R.: Fuzzy Queries in Multimedia Database Systems. In: PODS, pp. 1–10 (1998)Google Scholar
  8. 8.
    Carey, M.J., Kossmann, D.: On Saying “Enough Already!” in SQL. In: SIGMOD Conference, pp. 219–230 (1997)Google Scholar
  9. 9.
    Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases: Mapping strategies and performance evaluation. ACM Trans. Database Syst. 27(2), 153–187 (2002)CrossRefGoogle Scholar
  10. 10.
    Chen, C.-M., Ling, Y.: A Sampling-Based Estimator for Top-k Query. In: ICDE, pp. 617–627 (2002)Google Scholar
  11. 11.
    Hristidis, V., Koudas, N., Papakonstantinou, Y.: PREFER: A System for the Efficient Execution of Multi-parametric Ranked Queries. In: SIGMOD Conference, pp. 259–270 (2001)Google Scholar
  12. 12.
    Natsev, A., Chang, Y.-C., Smith, J.R., Li, C.-S., Vitter, J.S.: Supporting Incremental Join Queries on Ranked Inputs. In: Proc. of the 27th International Conference on Very Large Data Bases, pp. 281–290 (2001)Google Scholar
  13. 13.
    Godfrey, P.: Minimization in Cooperative Response to Failing Database Queries. Int. J. Cooperative Inf. Syst. 6(2), 95–149 (1997)CrossRefGoogle Scholar
  14. 14.
    Chu, W.W., Yang, H., Chiang, K., Minock, M., Chow, G., Larson, C.: CoBase.: A Scalable and Extensible Cooperative Information System. J. Intell. Inf. Syst. 6(2/3), 223–259 (1996)CrossRefGoogle Scholar
  15. 15.
    Kleinberg, J.M.: Authoritative Sources in a Hyperlinked Environment. J. ACM 46(5), 604–632 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: Jensen, C.S., Jeffery, K.G., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 496–513. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Guo, Y., Pan, Z., Heflin, J.: An Evaluation of Knowledge Base Systems for Large OWL Datasets. In: International Semantic Web Conference, pp. 274–288 (2004)Google Scholar
  18. 18.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hai Huang
    • 1
  • Chengfei Liu
    • 1
  • Xiaofang Zhou
    • 2
  1. 1.Faulty of ICTSwinburne University of TechnologyAustralia
  2. 2.School of ITEEThe University of QueenslandAustralia

Personalised recommendations