Skip to main content

Virulence Megaplasmids in Bacillus anthracis and Their Relatives in the Bacillus cereus Group

  • Chapter
Microbial Megaplasmids

Part of the book series: Microbiology Monographs ((MICROMONO,volume 11))

Abstract

Bacillus anthracis is the etiological agent of anthrax. In the 1980s, a link was discovered between plasmids and major virulence factors of B. anthracis. Indeed, the three toxin components are encoded by pXO1, a 181-kb plasmid, and the poly-glutamate capsule biosynthetic operon is carried by pXO2, a 97-kb plas-mid. The functions encoded by a few other genes were described after screening or selecting for specific phenotypes, such as regulation of virulence factor synthesis. Despite a renewal of interest in B. anthracis at the end of the twentieth century, which prompted further research and led to complete sequencing of both plas-mids in 1999, only few genes have been fully characterized. These include genes involved in replication, sporulation, and germination. Yet, 40% of the open reading frames (ORFs) are of unknown function, and for most of the others a function has only been predicted in silico. B. anthracis is, on a genetic basis, a Bacillus cereus. B. cereus strains also harbor megaplasmids, some sharing core sequences with pXO1 and pXO2. These plasmids also encode virulence factors or specific environmental adaptive pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariel N, Zvi A, Grosfeld H, Gat O, Inbar Y, Velan B, Cohen S, Shafferman A (2002) Search for potential vaccine candidate open reading frames in the Bacillus anthracis virulence plasmid pXO1:in silico and in vitro screening. Infect Immun 70:6817–6827

    Article  CAS  PubMed  Google Scholar 

  • Aronson AI, Bell C, Fulroth B (2005) Plasmid-encoded regulator of extracellular proteases in Bacillus anthracis. J Bacteriol 187:3133–3138

    Article  CAS  PubMed  Google Scholar 

  • Ashiuchi M, Soda K, Misono H (1999) A poly-gamma-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-gamma-glutamate produced by Escherichia coli clone cells. Biochem Biophys Res Commun 263:6–12

    Article  CAS  PubMed  Google Scholar 

  • Ashiuchi M, Nawa C, Kamei T, Song JJ, Hong SP, Sung MH, Soda K, Yagi T, Misono H (2001) Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur J Biochem 268:5321–5328 Corrigendum: Eur J Biochem 268:6003

    Article  CAS  PubMed  Google Scholar 

  • Bartkus JM, Leppla SH (1989) Transcriptional regulation of the protective antigen gene of Bacillus anthracis. Infect Immun 57:2295–2300

    CAS  PubMed  Google Scholar 

  • Battisti L, Green BD, Thorne CB (1985) Mating system for plasmid transfer of plasmids among Bacillus anthracis, Bacillus, cereus and Bacillus thuringiensis. J Bacteriol 162:543–550

    CAS  PubMed  Google Scholar 

  • Berry C, O'Neil S, Ben-Dov E, Jones AF, Murphy L, Quail MA, Holden MT, Harris D, Zaritsky A, Parkhill J (2002) Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol. 68:5082–5095

    Article  CAS  PubMed  Google Scholar 

  • Bongiorni C, Stoessel R, Shoemaker D, Perego M (2006) Rap phosphatase of virulence plasmid pXO1 inhibits Bacillus anthracis sporulation. J Bacteriol 188:487–498

    Article  CAS  PubMed  Google Scholar 

  • Bourgogne A, Drysdale M, Hilsenbeck SG, Peterson SN, Koehler TM (2003) Global effects of virulence gene regulators in a Bacillus anthracis strain with both virulence plasmids. Infect Immun 71:2736–2743

    Article  CAS  PubMed  Google Scholar 

  • Brunsing RL, La Clair C, Tang S, Chiang C, Hancock LE, Perego M, Hoch JA (2005) Characterization of sporulation histidine kinases of Bacillus anthracis. J Bacteriol 187:6972–6981

    Article  CAS  PubMed  Google Scholar 

  • Candela T, Fouet A (2005) Bacillus anthracis CapD, belonging to the gamma-glutamyltranspepti-dase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol 57:717–726

    Article  CAS  PubMed  Google Scholar 

  • Candela T, Fouet A (2006) Poly-gamma-glutamate in bacteria. Mol Microbiol 60:1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Candela T, Mock M, Fouet A (2005) CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J Bacteriol 187:7765–7772

    Article  CAS  PubMed  Google Scholar 

  • Collier RJ, Young JA (2003) Anthrax toxin. Annu Rev Cell Dev Biol 19:45–70

    Article  CAS  PubMed  Google Scholar 

  • Dramsi S, Trieu-Cuot P, Bierne H (2005) Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res Microbiol 156:289–297

    Article  CAS  PubMed  Google Scholar 

  • Drysdale M, Bourgogne A, Hilsenbeck SG, Koehler TM (2004) atxA controls Bacillus anthracis capsule synthesis via acpA and a newly discovered regulator, acpB. J Bacteriol 186:307–315

    Article  CAS  PubMed  Google Scholar 

  • Drysdale M, Bourgogne A, Koehler TM (2005a) Transcriptional analysis of the Bacillus anthracis capsule regulators. J Bacteriol 187:5108–5114

    Article  CAS  Google Scholar 

  • Drysdale M, Heninger S, Hutt J, Chen Y, Lyons CR, Koehler TM (2005b) Capsule synthesis by Bacillus anthracis is required for dissemination in murine inhalation anthrax. EMBO J 24:221—227

    Article  CAS  Google Scholar 

  • Ehling-Schulz M, Svensson B, Guinebretiere MH, Lindback T, Andersson M, Schulz A, Fricker M, Christiansson A, Granum PE, Martlbauer E, Nguyen-The C, Salkinoja-Salonen M, Scherer S (2005) Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related strains. Microbiology 151:183–197

    Article  CAS  PubMed  Google Scholar 

  • Ehling-Schulz M, Fricker M, Grallert H, Riek P, Wagner M, Scherer S (2006) Cereulide syn-thetase gene cluster from emetic Bacillus cereus: structure and location on a mega virulence plasmid related to Bacillus anthracis toxin plasmid pXO1. BMC Microbiol 6:20

    Article  PubMed  Google Scholar 

  • Eveland SS, Pompliano DL, Anderson MS (1997) Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly- γ-glutamate ligases:identification of a ligase superfamily. Biochemistry 36:6223–6229

    Article  CAS  PubMed  Google Scholar 

  • Everest P, Li J, Douce G, Charles I, De Azavedo J, Chatfield S, Dougan G, Roberts M (1996) Role of the Bordetella pertussis P.69/pertactin protein and the P.69/pertactin RGD motif in the adherence to and invasion of mammalian cells. Microbiology 142:3261–3268

    Article  CAS  PubMed  Google Scholar 

  • Fisher N, Hanna P (2005) Characterization of Bacillus anthracis germinant receptors in vitro. J Bacteriol 187:8055–8062

    Article  CAS  PubMed  Google Scholar 

  • Fouet A, Mock M (1996) Differential influence of the two Bacillus anthracis plasmids on regulation of virulence gene expression. Infect Immun 64:4928–4932

    CAS  PubMed  Google Scholar 

  • Fouet A, Mock M (2006) Regulatory networks for virulence and persistence of Bacillus anthracis Curr Opin Microbiol 9:160–166

    Article  CAS  PubMed  Google Scholar 

  • Fouet A, Sirard JC, Mock M (1994) Bacillus anthracis pXO1 virulence plasmid encodes a type 1 DNA topoisomerase. Mol Microbiol 11:471–479

    Article  CAS  PubMed  Google Scholar 

  • Gladstone GP (1946) Immunity to anthrax — protective antigen present in cell-free culture filtrates. Brit J Exp Pathol 27:394–418

    CAS  Google Scholar 

  • Glomski IJ, Corre JP, Mock M, Goossens PL (2007a) Noncapsulated toxinogenic Bacillus anthra-cis presents a specific growth and dissemination pattern in naive and protective antigen-immune mice. Infect Immun. 75:4754–4761

    Article  CAS  Google Scholar 

  • Glomski IJ, Piris-Gimenez A, Huerre M, Mock M, Goossens PL (2007b) Primary involvement of pharynx and peyer's patch in inhalational and intestinal anthrax. PLoS Pathog. 3(6):e76

    Article  Google Scholar 

  • González JM Jr, Dulmage HT, Carlton BC (1981) Correlation between specific plasmids and delta-endotoxin production in Bacillus thuringiensis. Plasmid 5:351–365

    Article  Google Scholar 

  • Green BD, Battisti L, Koehler TM, Thorne CB, Ivins BE (1985) Demonstration of a capsule plasmid in Bacillus anthracis. Infect Immun 49:291–297

    CAS  PubMed  Google Scholar 

  • Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol 67:277–301

    Article  CAS  Google Scholar 

  • Grynberg M, Li Z, Szczurek E, Godzik A (2007) Putative type IV secretion genes in Bacillus anthracis. Trends Microbiol 15:191–195

    Article  CAS  PubMed  Google Scholar 

  • Guidi-Rontani C, Pereira Y, Ruffie S, Sirard JC, Weber-Levy M, Mock M (1999) Identification and characterization of a germination operon on the virulence plasmid pXO1 of Bacillus anthracis. Mol Microbiol 33:407–414

    Article  CAS  PubMed  Google Scholar 

  • Guignot J, Mock M, Fouet A (1997) AtxA activates the transcription of genes harbored by both Bacillus anthracis virulence plasmids. FEMS Microbiol Lett 147:203–207

    Article  CAS  PubMed  Google Scholar 

  • Han CS, Xie G, Challacombe JF, Altherr MR, Bhotika SS, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O, Cleland C, Dimitrijevic M, Doggett NA, Fawcett JJ, Glavina T, Goodwin LA, Hill KK, Hitchcock P, Jackson PJ, Keim P, Kewalramani AR, Longmire J, Lucas S, Malfatti S, McMurry K, Meincke LJ, Misra M, Moseman BL, Mundt M, Munk AC, Okinaka RT, Parson-Quintana B, Reilly LP, Richardson P, Robinson DL, Rubin E, Saunders E, Tapia R, Tesmer JG, Thayer N, Thompson LS, Tice H, Ticknor LO, Wills PL, Brettin TS, Gilna P (2006) Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis. J Bacteriol 188:3382–3390

    Article  PubMed  Google Scholar 

  • Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolstø AB (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis-One species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Article  CAS  PubMed  Google Scholar 

  • Hernandez E, Ramisse F, Ducoureau JP, Cruel T, Cavallo JD (1998) Bacillus thuringiensi subsp. konkukian (serotype H34) superinfection:case report and experimental evidence of patho-genicity in immunosuppressed mice. J Clin Microbiol 36:2138–2139

    CAS  PubMed  Google Scholar 

  • Hoffmaster AR, Koehler TM (1999) Autogenous regulation of the Bacillus anthracis pag operon. J Bacteriol 181:4485–4492

    CAS  PubMed  Google Scholar 

  • Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, De BK, Sacchi CT, Fitzgerald C, Mayer LW, Maiden MCJ, Priest FG, Barker M, Jiang LX, Cer RZ, Rilstone J, Peterson SN, Weyant RS, Galloway DR, Read TD, Popovic T, Fraser CM (2004) Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc Natl Acad Sci USA 101:8449–8454

    Article  CAS  PubMed  Google Scholar 

  • Hoover TA (1998) Characterization of a region of Bacillus anthracis capsule-encoding plas-mid pXO2 capable of autonomous replication, In: Abstracts of the 3rd International Conference on Anthrax, University of Plymouth, Plymouth, UK. DERA Chemical and Biological Defence Sector, Porton Down, UK, and the Society for Applied Microbiology, Plymouth, UK, p 52

    Google Scholar 

  • Koehler TM, Dai Z, Kaufman-Yarbray M (1994) Regulation of the Bacillus anthracis protective antigen gene:CO 2 and a trans-acting element activate transcription from one of two promoters. J Bacteriol 176:586–595

    CAS  PubMed  Google Scholar 

  • Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198

    Article  CAS  PubMed  Google Scholar 

  • Makino SI, Uchida I, Terakado N, Sasakawa C, Yoshikawa M (1989) Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthra-cis. J Bacteriol 171:722–730

    CAS  PubMed  Google Scholar 

  • Makino S, Watarai M, Cheun HI, Shirahata T, Uchida I (2002) Effect of the lower molecular capsule released from the cell surface of Bacillus anthracis on the pathogenesis of anthrax. J Infect Dis 186:227–233

    Article  CAS  PubMed  Google Scholar 

  • Mesnage S, Fouet A (2002) Plasmid encoded autolysin in Bacillus anthracis: modular structure and catalytic properties. J Bacteriol 184:331–334

    Article  CAS  PubMed  Google Scholar 

  • Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M, Fouet A (2000) Bacterial SLH-domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall-polysaccharide pyruvylation. EMBO J 19:4473–4484

    Article  CAS  PubMed  Google Scholar 

  • Mignot T, Mock M, Robichon D, Landier A, Lereclus D, Fouet A (2001) The incompatibility between the PlcR- and AtxA-controlled regulons may have selected a nonsense mutation in Bacillus anthracis. Mol Microbiol 42:1189–1198

    Article  CAS  PubMed  Google Scholar 

  • Mignot T, Mock M, Fouet A (2003) A plasmid-encoded regulator couples the synthesis of toxins and surface structures in Bacillus anthracis. Mol Microbiol 47:917–927

    Article  CAS  PubMed  Google Scholar 

  • Mikesell P, Ivins BE, Ristroph JD, Dreier TM (1983) Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun 39:371–376

    CAS  PubMed  Google Scholar 

  • Moayeri M, Leppla SH (2004) The roles of anthrax toxin in pathogenesis. Curr Opin Microbiol 7:19–24

    Article  CAS  PubMed  Google Scholar 

  • Mock M, Fouet A (2001) Anthrax. Annu Rev Microbiol 55:647–671

    Article  CAS  PubMed  Google Scholar 

  • Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P, Koehler TM, Lamke G, Kumano S, Mahillon J, Manter D, Martinez Y, Ricke D, Svensson R, Jackson PJ (1999a) Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 181:6509–6515

    CAS  Google Scholar 

  • Okinaka R, Cloud K, Hampton O, Hoffmaster A, Hill K, Keim P, Koehler T, Lamke G, Kumano S, Manter D, Martinez Y, Ricke D, Svensson R, Jackson P (1999b) Sequence, assembly and analysis of pXO1 and pXO2. J Appl Microbiol 87:261–262

    Article  CAS  Google Scholar 

  • Pallen MJ (2002) The ESAT-6/WXG100 superfamily — and a new Gram-positive secretion system? Trends Microbiol 10:209–212

    Article  CAS  PubMed  Google Scholar 

  • Pannucci J, Okinaka RT, Williams E, Sabin R, Ticknor LO, Kuske CR (2002) DNA sequence conservation between the Bacillus anthracis pXO2 plasmid and genomic sequence from closely related bacteria. BMC Genomics 3:34

    Article  PubMed  Google Scholar 

  • Rasko DA, Ravel J, Økstad OA, Helgason E, Cer RZ, Jiang L, Shores KA, Fouts DE, Tourasse NJ, Angiuoli SV, Kolonay J, Nelson WC, Kolstø AB, Fraser CM, Read TD (2004) The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32:977–988

    Article  CAS  PubMed  Google Scholar 

  • Rasko DA, Altherr MR, Han CS, Ravel J (2005) Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev 29:303–329

    CAS  PubMed  Google Scholar 

  • Rasko DA, Rosovitz MJ, Økstad OA, Fouts DE, Jiang L, Cer RZ, Kolstø AB, Gill SR, Ravel J (2007) Complete sequence analysis of novel plasmids from emetic and periodontal Bacillus cereus isolates reveals a common evolutionary history among the B-cereus-group plasmids, including Bacillus anthracis pXO1. J Bacteriol 189:52–64

    Article  CAS  PubMed  Google Scholar 

  • Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang LX, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296:2028–2033

    Article  CAS  PubMed  Google Scholar 

  • Reddy A, Battisti L, Thorne CB (1987) Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol 169:5263–5270

    CAS  PubMed  Google Scholar 

  • Saile E, Koehler TM (2002) Control of anthrax toxin gene expression by the transition state regulator abrB. J Bacteriol 184:370–380

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–790

    CAS  PubMed  Google Scholar 

  • Sirard JC, Mock M, Fouet A (1994) The three Bacillus anthracis toxin genes are coordinately regulated by bicarbonate and temperature. J Bacteriol 176:5188–5192

    CAS  PubMed  Google Scholar 

  • Slamti L, Perchat S, Gominet M, Vilas-Boas G, Fouet A, Mock M, Sanchis V, Chaufaux J, Gohar M, and Lereclus D (2004) Distinct mutations in PlcR explain why some strains of the Bacillus cereus group are nonhemolytic. J Bacteriol. 186:3531–3538

    Article  CAS  PubMed  Google Scholar 

  • Sterne M (1937) Avirulent anthrax vaccine. Onderstepoort J Vet Sci Animal Ind 21:41–43

    Google Scholar 

  • Strauch MA, Ballar P, Rowshan AJ, Zoller KL (2005) The DNA-binding specificity of the Bacillus anthracis AbrB protein. Microbiology 151:1751–1759

    Article  CAS  PubMed  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2002) A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45:169–178

    Article  CAS  PubMed  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2003) Polymorphism in the collagen-like region of the Bacillus anthracis BclA protein leads to variation in exosporium filament length. J Bacteriol 185:1555–1563

    Article  CAS  PubMed  Google Scholar 

  • Thorne CB (1993) Bacillus anthracis. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington DC, pp 113–124

    Google Scholar 

  • Tinsley E, Khan SA (2006) A novel FtsZ-like protein is involved in replication of the anthrax toxin-encoding pXO1 plasmid in Bacillus anthracis. J Bacteriol 188:2829–2835

    Article  CAS  PubMed  Google Scholar 

  • Tinsley E, Naqvi A, Bourgogne A, Koehler TM, Khan SA (2004) Isolation of a minireplicon of the virulence plasmid pXO2 of Bacillus anthracis and characterization of the plasmid-encoded RepS replication protein. J Bacteriol 186:2717–2723

    Article  CAS  PubMed  Google Scholar 

  • Uchida I, Sekizaki T, Hashimoto K, Terakado N (1985) Association of the encapsulation of Bacillus anthracis with a 60 megadalton plasmid. J Gen Microbiol 131:363–367

    CAS  PubMed  Google Scholar 

  • Uchida I, Hornung JM, Thorne CB, Klimpel KR, Leppla SH (1993a) Cloning and characterization of a gene whose product is a trans-activator of anthrax toxin synthesis. J Bacteriol 175:5329–5338

    CAS  Google Scholar 

  • Uchida I, Makino S, Sasakawa C, Yoshikawa M, Sugimoto C, Terakado N (1993b) Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol Microbiol 9:487–496

    Article  CAS  Google Scholar 

  • Uchida I, Makino S, Sekizaki T, Terakado N (1997) Cross-talk to the genes for Bacillus anthracis capsule synthesis by atxA, the gene encoding the trans-activator of anthrax toxin synthesis. Mol Microbiol 23:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Urushibata Y, Tokuyama S, Tahara Y (2002) Characterization of the Bacillus subtilis ywsC gene, involved in gamma-polyglutamic acid production. J Bacteriol 184:337–343

    Article  CAS  PubMed  Google Scholar 

  • Van der Auwera GA, Andrup L, Mahillon J (2005) Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics 26:103

    Article  Google Scholar 

  • Vietri NJ, Marrero R, Hoover TA, Welkos SL (1995) Identification and characterization of a trans-activator involved in the regulation of encapsulation by Bacillus anthracis. Gene 152:1–9

    Article  CAS  PubMed  Google Scholar 

  • Vodkin MH, Leppla SH (1983) Cloning of the protective antigen gene of Bacillus anthracis. Cell 34:693–697

    Article  CAS  PubMed  Google Scholar 

  • White AK, Hoch JA, Grynberg M, Godzik A, Perego M (2006) Sensor domains encoded in Bacillus anthracis virulence plasmids prevent sporulation by hijacking a sporulation sensor histidine kinase. J Bacteriol 188:6354–6360

    Article  CAS  PubMed  Google Scholar 

  • Wilcks A, Smidt L, Økstad OA, Kolstø AB, Mahillon J, Andrup L (1999) Replication mechanism and sequence analysis of the replicon of pAW63, a conjugative plasmid from Bacillus thuring-iensis. J Bacteriol 181:3193–3200

    CAS  PubMed  Google Scholar 

  • Williams RC, Rees ML, Jacobs MF, Pragai Z, Thwaite JE, Baillie LW, Emmerson PT, Harwood CR (2003) Production of Bacillus anthracis protective antigen is dependent on the extracellular chaperone, PrsA. J Biol Chem 278:18056–18062

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M Moya was funded by DGA no. 04 34 025 and CRSSA (Ministère de la Défense/DGA) no. 04 07 005/00

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fouet, A., Moya, M. (2009). Virulence Megaplasmids in Bacillus anthracis and Their Relatives in the Bacillus cereus Group. In: Schwartz, E. (eds) Microbial Megaplasmids. Microbiology Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85467-8_9

Download citation

Publish with us

Policies and ethics