Skip to main content

Megaplasmid pKB1 of the Rubber-Degrading Bacterium Gordonia westfalica Strain Kb1

  • Chapter
  • 1250 Accesses

Part of the book series: Microbiology Monographs ((MICROMONO,volume 11))

Abstract

Sequence analysis of the circular 101,016-bp plasmid pKB1 from the rubber-degrading bacterium Gordonia westfalica strain Kb1 revealed 105 open reading frames (ORFs) which could be assigned to three functional groups (a) replication and partitioning, (b) catabolism, and (c) conjugative transfer. Successful con-jugative transfer of pKB1 demonstrated the functionality of its conjugative transfer genes. The origin of replication of pKB1 was identified and used for construction of two Escherichia coliGordonia shuttle vectors suitable for several Gordonia species and related genera. As expression of the pKB1-encoded cadA in E. coli mediated resistance to cadmium, cadA was used as a pKB1-specific selection marker to monitor transfer of pKB1 by electroporation and conjugation to taxonomically related bacteria, mediating cadmium resistance to a maximal concentration of 800 μ M to the recombinant pKB1-harboring strains. Plasmid pKB1-free mutants of G. westfalica strain Kb1 had lost the ability to use natural rubber (NR) as sole carbon source, thereby suggesting that genes essential for NR degradation are encoded by pKB1. Transcription analysis of pKB1-encoded genes with a putative metabolic function revealed that ORF42 (a putative cytochrome c oxidase) and ORF6 (a putative epoxide hydrolase) are induced in cells of G. westfalica strain Kb1 during growth on NR but not or only slightly on sodium acetate. As genetic engineering of pKB1 in its host G. westfalica strain Kb1 failed due to the lack of an effective gene transfer system for this strain, pKB1 was transferred to genetically approachable strains for engineering and analysis of pKB1-encoded features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arenskötter M, Baumeister D, Berekaa MM, Pötter G, Kroppenstedt RM, Linos A, Steinbüchel A (2001) Taxonomic characterization of two rubber-degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hypervariable regions of 16 S rDNA sequences. FEMS Microbiol Lett 205:277–282

    Article  PubMed  Google Scholar 

  • Arenskötter M, Baumeister D, Kalscheuer R, Steinbüchel A (2003) Identification and application of plasmids suitable for transfer of foreign DNA to members of the genus Gordonia. Appl Environ Microbiol 69:4971–4974

    Article  PubMed  Google Scholar 

  • Arenskötter M, Bröker D, Steinbüchel A (2004) Biology of the metabolically diverse genus Gordonia. Appl Environ Microbiol 70:3195–3204

    Article  PubMed  Google Scholar 

  • Arenskötter M, Linos A, Schumann P, Kroppenstedt RM, Steinbüchel A (2005) Gordonia nitida Yoon et al. 2001 is a later synonym of Gordonia alkanivorans Kummer et al. 1999. Int J Syst Evol Microbiol 55:695–697

    Article  PubMed  Google Scholar 

  • Banh Q, Arenskötter M, Steinbüchel A (2005) Establishment of Tn5096-based transposon mutagenesis in Gordonia polyisoprenivorans. Appl Environ Microbiol 71:5077–5084

    Article  CAS  PubMed  Google Scholar 

  • Braaz R, Fischer P, Jendrossek D (2004) Novel type of heme-dependent oxygenase catalyses oxidative cleavage of rubber poly(cis-1,4-isoprene). Appl Environ Microbiol 70:7388–7395

    Article  CAS  PubMed  Google Scholar 

  • Braaz R, Armbruster W, Jendrossek D (2005) Heme-dependent rubber oxygenase RoxA of Xanthomonas sp. cleaves the carbon backbone of poly(cis-1,4-isoprene) by a dioxygenase mechanism. Appl Environ Microbiol 71:2473–2478

    Article  CAS  PubMed  Google Scholar 

  • Bröker D, Arenskötter M, Legatzki A, Nies DH, Steinbüchel A (2004) Characterization of the 101.016-kbp megaplasmid pKB1 isolated from the rubber degrading bacterium Gordonia westfalica Kb1. J Bacteriol 186:212–225

    Article  PubMed  Google Scholar 

  • Bröker D, Arenskötter M, Steinbüchel A (2008) Transfer of megaplasmid pKB1 from the rubber-degrading bacterium Gordonia westfalica strain Kb1 to related bacteria and its modification. Appl Microbiol Biotechnol 77:1317–1327

    Article  PubMed  Google Scholar 

  • Byrd DR, Matson SW (1997) Nicking by transesterification: the reaction catalysed by a relaxase. Mol Microbiol 25:1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Chang JH, Kim YJ, Lee BH, Cho K-S, Rye HW, Chang YK, Chang HN (2001) Production of a desulfurization biocatalyst by two-stage fermentation and its application for the treatment of model and diesel oils. Biotechnol Prog 17:876–880

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Dutta TK (2003) Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem Biophys Res Commun 254:311–314

    Google Scholar 

  • Cook AM, Hütter R (1984) Deethylsimazine: bacterial dechlorination, deamination, and complete degradation. J Agric Food Chem 32:581–585

    Article  CAS  Google Scholar 

  • Cook AM, Hütter R (1986) Ring dechlorination of deethylsimazine by hydrolases from Rhodococcus corallinus. FEMS Microbiol Lett 34:335–338

    Article  CAS  Google Scholar 

  • De Miguel T, Sieiro C, Poza M, Villa TG (2000) Isolation and taxonomic study of a new canthaxanthin-containing bacterium, Gordonia jacobaea MV-1 sp. nov. Int Microbiol 3:107–111

    Google Scholar 

  • De Miguel T, Sieiro C, Poza M, Villa TG (2001) Analysis of canthaxanthin and related pigments from Gordonia jacobaea mutants. J Agric Food Chem 49:1200–1202

    Article  PubMed  Google Scholar 

  • Denis-Larose C, Bergeron H, Labbé D, Greer CW, Hawari J, Grossman MJ, Sankey BM, Lau PCK (1998) Characterization of the basic replicon of Rhodococcus plasmid pSOX and development of a Rhodococcus-Escherichia coli shuttle vector. Appl Environ Microbiol 64:4363–4367

    CAS  PubMed  Google Scholar 

  • Fetzner S, Kolkenbrock S, Parschat K (2007) Catabolic linear plasmids. In: A (ed) Steinbüchel Microbiology monographs, vol 7. Springer, Berlin, pp 63–98

    Google Scholar 

  • Freedman JA, Chan SH (1984) Interactions in cytochrome oxidase: functions and structure. J Bioenerg Biomembr 16:75–100

    Article  CAS  PubMed  Google Scholar 

  • Fusconi R, Godinho MJL (2002) Screening for exopolysaccharide-producing bacteria from subtropical polluted groundwater. Braz J Biol 62:363–369

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SC, Morton J, Buchanan S, Oldfield C, McRoberts A (1998) Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:2545–2553

    Article  CAS  PubMed  Google Scholar 

  • Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Perez G, Fayolle F, Vandecasteele J-P (2001) Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae. Appl Microbiol Biotechnol 55:117–121

    Article  Google Scholar 

  • Jendrossek D, Tomasi G, Kroppenstedt RM (1997a) Bacterial degradation of natural rubber: a privilege of actinomycetes? FEMS Microbiol Lett 150:179–188

    Article  CAS  Google Scholar 

  • Jendrossek D, Tomasi G, Schlegel HG (1997b) Mikrobiologischer Abbau von Kautschuk. Nachrichten der Akademie der Wissenschaften in Göttingen. II mathematisch-physikalische Klasse. Nr 1. Vandenhoeck & Ruprecht, Göttingen

    Google Scholar 

  • Johan ET, van Vlieg H, Leemhuis H, Spielberg JHL, Janssen DB (2000) Characterization of the gene cluster involved in isoprene metabolism in Rhodococcus sp. strain AD45. J Bacteriol 182:1956–1963

    Article  Google Scholar 

  • Kim SB, Brown R, Oldfield C, Gilbert SC, Goodfellow M (1999) Gordonia desulfuricans sp. nov., a benzothiophene-desulfurizing actinomycete. Int J Syst Bacteriol 49:1845–1851

    Article  CAS  PubMed  Google Scholar 

  • Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a dibenzothiophene-desulfurizing actinomycete. Int J Syst Bacteriol 50:2031–2036

    CAS  Google Scholar 

  • Koma D, Sakashita Y, Kubota K, Fujii Y, Hasumi F, Chung S-Y, Kubo M (2003) Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Biosci Biotechnol Biochem 67:1590–1593

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Yamamoto D, Yokota A, Suzuki A, Nagasawa H, Sakuda S (2000) Gordonan, an acidic polysaccharide with cell aggregation-inducing activity in insect BM-N4 cells, produced by Gordonia sp. Biosci Biotechnol Biochem 64:2388–2394

    Article  CAS  PubMed  Google Scholar 

  • Kotani T, Yamamoto T, Yurimoto H, Sakai Y, Kato N (2003) Propane monooxygenase and NAD + -dependent secondary alcohol dehydrogenase in propane metabolism by Gordonia sp. strain TY-5. J Bacteriol 185:7120–7128

    Article  CAS  PubMed  Google Scholar 

  • Kotani T, Yurimoto H, Kato N, Sakai Y (2007) Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 189:886–893

    Article  CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivates of the broad host range cloning vector pBBR1MCS, carrying different antibiotic resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Linos A, Steinbüchel A (1998) Microbial degradation of natural and synthetic rubbers by novel bacteria belonging to the genus Gordona. Kautsch Gummi Kunstst 51:496–499

    CAS  Google Scholar 

  • Linos A, Steinbüchel A, Spröer C, Kroppenstedt RM (1999) Gordonia polyisoprenivorans sp. nov., a rubber degrading actinomycete isolated from automobil tire. Int J Syst Bacteriol 49:1785–1791

    Article  CAS  PubMed  Google Scholar 

  • Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming HC, Kroppenstedt RM, Steinbüchel A (2000) Biodegradation of cis -1,4-polyisoprene rubbers by distinct actinomycetes: Microbial strategies and detailed surface analysis. Appl Environ Microbiol 66:1639–1645

    Article  CAS  PubMed  Google Scholar 

  • Linos A, Berekaa MM, Steinbüchel A, Kim KK, Spröer C, Kroppenstedt RM (2002) Gordonia westfalica sp. nov., a novel rubber-degrading actinomycte. Int J Syst Evol Mircobiol 52:1133–1139

    Article  CAS  Google Scholar 

  • Mikolasch A, Hammer E, Schauer F (2003) Synthesis of imidazol-2-yl amino acids by using cells from alkane-oxidizing bacteria. Appl Environ Microbiol 69:1670–1679

    Article  CAS  PubMed  Google Scholar 

  • Mulbry WW (1994) Purification and characterization of an inducible s -triazine hydrolase from Rhodococcus corallinus NRRL B-15444R. Appl Environ Microbiol 60:613–618

    CAS  PubMed  Google Scholar 

  • Nakamura M, Ogata K, Nagamine T, Tajima K, Matsui H, Benno Y (2001) The replicon of the cryptic plasmid pSBO1 isolated from Streptococcus bovis JB1. Curr Microbiol 43:11–16

    Article  CAS  Google Scholar 

  • Negoro S (2000) Biodegradation of nylon oligomers. Appl Environ Microbiol 54:461–466

    CAS  Google Scholar 

  • Nies DH, Silver S (2007) Molecular microbiology of heavy metals. In: A (ed) Steinbüchel Microbiology monographs, vol 6. Springer, Berlin

    Google Scholar 

  • Rhee SK, Chang JH, Chang HN (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64:2327–2331

    CAS  PubMed  Google Scholar 

  • Rose K, Steinbüchel A (2005) Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microbiol 71:2803–2812

    Article  CAS  PubMed  Google Scholar 

  • Rose K, Tenberge KB, Steinbüchel A (2005) Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation. Biomacromolecules 6:180–188

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Stecker C, Johann A, Herzberg C, Averhoff B, Gottschalk G (2003) Complete nucleotide sequence and genetic organization of the 210-kilobase linear plasmid of Rhodococcus erythropolis BD2. J Bacteriol 185:5269–5274

    Article  CAS  PubMed  Google Scholar 

  • Tan H-M (1999) Bacterial catabolic transposons. Appl Microbiol Biotechnol 51:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tsuchii A, Takeda K, Tokiwa Y (1996) Colonization and degradation of rubber pieces by Nocardia sp. Biodegradation 7:41–48

    Article  Google Scholar 

  • Vazquez-Duhalt R (1999) Cytochrome c as a biocatalyst. J Mol Catalysis B: Enzymatic 7:241–249

    Article  CAS  Google Scholar 

  • Veiga-Crespo P, Feijoo-Siota L, de Miguel T, Poza M, Villa TG (2006) Proposal of a method for the genetic transformation of Gordonia jacobae. J Appl Microbiol 100:608–614

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Morisseau C, Maxwell JE, Argiriadi MA, Christianson DW, Hammock BD (2000) Biochemical evidence for the involvement of tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase. J Biol Chem 275:23082–23088

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Lessard PA, Sengupta N, Windsor SD, O'Brien XM, Bramucci M, Tomb J-F, Nagarajan V, Sinskey AJ (2007) TraA is required for megaplasmid conjugation in Rhodococcus erythropolis AN12. Plasmid 57:55–70

    Article  CAS  PubMed  Google Scholar 

  • Yoon J-H, Lee JJ, Kang SS, Takeuchi M, Shin YK, Lee ST, Kang KH, Park YH (2000) Gordonia nitida sp. nov., a bacterium that degrades 3-ethylpyridine and 3-methylpyridine. Int J Syst Evol Microbiol 50:1203–1210

    CAS  PubMed  Google Scholar 

  • Zheng H, Tkachuk-Saad O, Prescott JF (1997) Development of a Rhodococcus equi-Escherichiacoli plasmid shuttle vector. Plasmid 38:180–187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the members of the laboratory, who were engaged in research on degradation of polyisoprenoides in the last 10 years. Research on micro-bial rubber degradation was in the past and is currently supported by grant provided by the Deutsche Bundesstiftung Umwelt (AZ. 13,072) and the Deutsche Forschungsgemeinschaft (Ste 386/10–), respectively.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bröker, D., Steinbüchel, A. (2009). Megaplasmid pKB1 of the Rubber-Degrading Bacterium Gordonia westfalica Strain Kb1. In: Schwartz, E. (eds) Microbial Megaplasmids. Microbiology Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85467-8_14

Download citation

Publish with us

Policies and ethics