Advertisement

Detection and Characterization of Uncultivated Microorganisms Using Microarrays

  • Terry J. Gentry
  • Zhili He
  • Jizhong ZhouEmail author
Chapter
  • 1.3k Downloads
Part of the Microbiology Monographs book series (MICROMONO, volume 10)

Abstract

Microarrays have unprecedented potential for the high-throughput detection and characterization of uncultivated microorganisms. Several different types of arrays have been developed or adapted for the interrogation of microbial genomes and monitoring microbial population dynamics and/or activity in relation to various microbial processes such as bioremediation and biogeochemical cycling. Even though the number of such microarray studies has increased dramatically over the last few years, microarray analysis of uncultivated microorganisms still poses several challenges including a lack of sequence information for many organisms and related issues regarding the sensitivity and specificity of detection. As research continues to address these difficulties, and with further technological advances, microarrays will undoubtedly find even broader application to the investigation of uncultivated microorganisms, thus greatly increasing our understanding of the genetics, physiology, and distribution of these heretofore largely uncharacterized microorganisms.

Keywords

Microbial Community Clone Library Oligonucleotide Probe Uncultivated Microorganism Microbial Characterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors’ efforts in preparing this chapter were supported by the United States Department of Energy Office of Science as part of its Genomics:GTL program through the Virtual Institute of Microbial Stress and Survival (VIMSS; http://vimss.lbl.gov) and Environmental Remediation Science Program of the Office of Biological and Environmental Research, Office of Science.

References

  1. Adamczyk J, Hesselsoe M, Iversen N, Horn M, Lehner A, Nielsen PH, Schloter M, Roslev P, Wagner M (2003) The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl Environ Microbiol 69:6875–6887PubMedGoogle Scholar
  2. Barnett MJ, Toman CJ, Fisher RF, Long SR (2004) A dual-genome Symbiosis Chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci USA 101:16636–16641PubMedGoogle Scholar
  3. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523PubMedGoogle Scholar
  4. Bent E, Yin B, Figueroa A, Ye J, Fu Q, Liu Z, McDonald V, Jeske D, Jiang T, Borneman J (2006) Development of a 9600-clone procedure for oligonucleotide fingerprinting of rRNA genes: utilization to identify soil bacterial rRNA genes that correlate in abundance with the development of avocado root rot. J Microbiol Methods 67:171–180PubMedGoogle Scholar
  5. Berry AE, Chiocchini C, Selby T, Sosio M, Wellington EM (2003) Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiol Lett 223:15–20PubMedGoogle Scholar
  6. Bjornstad A, Larsen BK, Skadsheim A, Jones MB, Andersen OK (2006) The potential of ecotoxicoproteomics in environmental monitoring: biomarker profiling in mussel plasma using ProteinChip array technology. J Toxicol Environ Health A 69:77–96PubMedGoogle Scholar
  7. Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5:566–582PubMedGoogle Scholar
  8. Bodrossy L, Stralis-Pavese N, Konrad-Koszler M, Weilharter A, Reichenauer TG, Schofer D, Sessitsch A (2006) mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl Environ Microbiol 72:1672–1676PubMedGoogle Scholar
  9. Botero LM, D’Imperio S, Burr M, McDermott TR, Young M, Hassett DJ (2005) Poly(A) polymerase modification and reverse transcriptase PCR amplification of environmental RNA. Appl Environ Microbiol 71:1267–1275PubMedGoogle Scholar
  10. Brodie EL, Desantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK, Wan JM, Firestone MK (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298PubMedGoogle Scholar
  11. Brodie EL, DeSantis TZ, Parker JP, Zubietta IX, Piceno YM, Andersen GL (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci USA 104:299–304PubMedGoogle Scholar
  12. Bunge J, Epstein SS, Peterson DG (2006) Comment on “Computational improvements reveal great bacterial diversity and high metal toxicity in soil”. Science 313:918; author reply 918Google Scholar
  13. Burgmann H, Widmer F, Sigler WV, Zeyer J (2003) mRNA extraction and reverse transcription-PCR protocol for detection of nifH gene expression by Azotobacter vinelandii in soil. Appl Environ Microbiol 69:1928–1935PubMedGoogle Scholar
  14. Call DR, Bakko MK, Krug MJ, Roberts MC (2003) Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob Agents Chemother 47:3290–3295PubMedGoogle Scholar
  15. Castiglioni B, Rizzi E, Frosini A, Sivonen K, Rajaniemi P, Rantala A, Mugnai MA, Ventura S, Wilmotte A, Boutte C, Grubisic S, Balthasart P, Consolandi C, Bordoni R, Mezzelani A, Battaglia C, De Bellis G (2004) Development of a universal microarray based on the ligation detection reaction and 16S rRNA gene polymorphism to target diversity of cyanobacteria. Appl Environ Microbiol 70:7161–7172PubMedGoogle Scholar
  16. Cebron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl Environ Microbiol 73:798–807PubMedGoogle Scholar
  17. Chandler DP, Jarrell AE (2004) Automated purification and suspension array detection of 16S rRNA from soil and sediment extracts by using tunable surface microparticles. Appl Environ Microbiol 70:2621–2631PubMedGoogle Scholar
  18. Chandler DP, Newton GJ, Small JA, Daly DS (2003) Sequence versus structure for the direct detection of 16S rRNA on planar oligonucleotide microarrays. Appl Environ Microbiol 69:2950–2958PubMedGoogle Scholar
  19. Chen YA, Chou CC, Lu X, Slate EH, Peck K, Xu W, Voit EO, Almeida JS (2006) A multivariate prediction model for microarray cross-hybridization. BMC Bioinformatics 7:101PubMedGoogle Scholar
  20. Cho JC, Tiedje JM (2001) Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays. Appl Environ Microbiol 67:3677–3682PubMedGoogle Scholar
  21. Cho JC, Tiedje JM (2002) Quantitative detection of microbial genes by using DNA microarrays. Appl Environ Microbiol 68:1425–1430PubMedGoogle Scholar
  22. Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, Bandela AM, Cardenas E, Garrity GM, Tiedje JM (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172PubMedGoogle Scholar
  23. Denef VJ, Park J, Rodrigues JLM, Tsoi TV, Hashsham SA, Tiedje JM (2003) Validation of a more sensitive method for using spotted oligonucleotide DNA microarrays for functional genomics studies on bacterial communities. Environ Microbiol 5:933–943PubMedGoogle Scholar
  24. Dennis P, Edwards EA, Liss SN, Fulthorpe R (2003) Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol 69:769–778PubMedGoogle Scholar
  25. Desantis TZ, Stone CE, Murray SR, Moberg JP, Andersen GL (2005) Rapid quantification and taxonomic classification of environmental DNA from both prokaryotic and eukaryotic origins using a microarray. FEMS Microbiol Lett 245:271–278PubMedGoogle Scholar
  26. Desantis TZ, Brodie EL, Moberg JP, Zubieta IX, Piceno YM, Andersen GL (2007) High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microb Ecol 53:371–383PubMedGoogle Scholar
  27. Dong Y, Glasner JD, Blattner FR, Triplett EW (2001) Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte, Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl Environ Microbiol 67:1911–1921PubMedGoogle Scholar
  28. Duburcq X, Olivier C, Malingue F, Desmet R, Bouzidi A, Zhou F, Auriault C, Gras-Masse H, Melnyk O (2004) Peptide-protein microarrays for the simultaneous detection of pathogen infections. Bioconjug Chem 15:307–316PubMedGoogle Scholar
  29. Dudley AM, Aach J, Steffen MA, Church GM (2002) Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc Natl Acad Sci USA 99:7554–7559PubMedGoogle Scholar
  30. Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A 99:1556–1561PubMedGoogle Scholar
  31. El Fantroussi S, Urakawa H, Bernhard AE, Kelly JJ, Noble PA, Smidt H, Yershov GM, Stahl DA (2003) Direct profiling of environmental microbial populations by thermal dissociation analysis of native rRNAs hybridized to oligonucleotide microarrays. Appl Environ Microbiol 69:2377–2382PubMedGoogle Scholar
  32. Eyers L, Smoot JC, Smoot LM, Bugli C, Urakawa H, McMurry Z, Siripong S, El-Fantroussi S, Lambert P, Agathos SN, Stahl DA (2006) Discrimination of shifts in a soil microbial community associated with TNT-contamination using a functional ANOVA of 16S rRNA hybridized to oligonucleotide microarrays. Environ Sci Technol 40:5867–5873PubMedGoogle Scholar
  33. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390PubMedGoogle Scholar
  34. Gao HC, Yang ZMK, Gentry TJ, Wu LY, Schadt CW, Zhou JZ (2007) Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Appl Environ Microbiol 73:563–571PubMedGoogle Scholar
  35. Greene EA, Voordouw G (2003) Analysis of environmental microbial communities by reverse sample genome probing. J Microbiol Methods 53:211–219PubMedGoogle Scholar
  36. Gregson BP, Millie DF, Cao C, Fahnenstiel GL, Pigg RJ, Fries DP (2006) Simplified enrichment and identification of environmental peptide toxins using antibody-capture surfaces with subsequent mass spectrometry detection. J Chromatogr A 1123:233–238PubMedGoogle Scholar
  37. Grimm V, Ezaki S, Susa M, Knabbe C, Schmid RD, Bachmann TT (2004) Use of DNA microarrays for rapid genotyping of TEM beta-lactamases that confer resistance. J Clin Microbiol 42:3766–3774PubMedGoogle Scholar
  38. Guschin D, Yershov G, Zaslavsky A, Gemmell A, Shick V, Proudnikov D, Arenkov P, Mirzabekov A (1997) Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal Biochem 250:203–211PubMedGoogle Scholar
  39. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685PubMedGoogle Scholar
  40. He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77PubMedGoogle Scholar
  41. He ZL, Wu LY, Fields MW, Zhou JZ (2005a) Use of microarrays with different probe sizes for monitoring gene expression. Appl Environ Microbiol 71:5154–5162Google Scholar
  42. He ZL, Wu LY, Li XY, Fields MW, Zhou JZ (2005b) Empirical establishment of oligonucleotide probe design criteria. Appl Environ Microbiol 71:3753–3760Google Scholar
  43. Held GA, Grinstein G, Tu Y (2003) Modeling of DNA microarray data by using physical properties of hybridization. Proc Natl Acad Sci USA 100:7575–7580PubMedGoogle Scholar
  44. Hesse J, Jacak J, Kasper M, Regl G, Eichberger T, Winklmayr M, Aberger F, Sonnleitner M, Schlapak R, Howorka S, Muresan L, Frischauf AM, Schutz GJ (2006) RNA expression profiling at the single molecule level. Genome Res 16:1041–1045PubMedGoogle Scholar
  45. Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, Zhou J (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67:4495–4503PubMedGoogle Scholar
  46. Jenkins BD, Steward GF, Short SM, Ward BB, Zehr JP (2004) Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA macroarray. Appl Environ Microbiol 70:1767–1776PubMedGoogle Scholar
  47. Kane MD, Jatkoe TA, Stumpf CR, Lu J, Thomas JD, Madore SJ (2000) Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acids Res 28:4552–4557PubMedGoogle Scholar
  48. Kim BC, Park JH, Gu MB (2004) Development of a DNA microarray chip for the identification of sludge bacteria using an unsequenced random genomic DNA hybridization method. Environ Sci Technol 38:6767–6774PubMedGoogle Scholar
  49. Kingsley MT, Straub TA, Call DR, Daly DS, Wunschel SC, Chandler DP (2002) Fingerprinting closely related Xanthomonas pathovars with random nonamer oligonucleotide microarrays. Appl Environ Microbiol 68:6361–6370PubMedGoogle Scholar
  50. Koizumi Y, Kelly JJ, Nakagawa T, Urakawa H, El-Fantroussi S, Al-Muzaini S, Fukui M, Urushigawa Y, Stahl DA (2002) Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology. Appl Environ Microbiol 68:3215–3225PubMedGoogle Scholar
  51. Korczak B, Frey J, Schrenzel J, Pluschke G, Pfister R, Ehricht R, Kuhnert P (2005) Use of diagnostic microarrays for determination of virulence gene patterns of Escherichia coli K1, a major cause of neonatal meningitis. J Clin Microbiol 43:1024–1031PubMedGoogle Scholar
  52. Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, Zhou J, Tiedje JM (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1:134–148PubMedGoogle Scholar
  53. Letowski J, Brousseau R, Masson L (2004) Designing better probes: effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. J Microbiol Meth 57:269–278Google Scholar
  54. Li ES, Ng JK, Wu JH, Liu WT (2004) Evaluating single-base-pair discriminating capability of planar oligonucleotide microchips using a non-equilibrium dissociation approach. Environ Microbiol 6:1197–1202PubMedGoogle Scholar
  55. Li F, Stormo GD (2001) Selection of optimal DNA oligos for gene expression arrays. Bioinformatics 17:1067–1076PubMedGoogle Scholar
  56. Li XY, He ZL, Zhou JZ (2005) Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Res 33:6114–6123PubMedGoogle Scholar
  57. Liebich J, Schadt CW, Chong SC, He Z, Rhee SK, Zhou J (2006) Improvement of oligonucleotide probe design criteria for functional gene microarrays in environmental applications. Appl Environ Microbiol 72:1688–1691PubMedGoogle Scholar
  58. Liu B, Bazan GC (2006) Synthesis of cationic conjugated polymers for use in label-free DNA microarrays. Nat Protoc 1:1698–1702PubMedGoogle Scholar
  59. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76:1824–1831PubMedGoogle Scholar
  60. Liu WT, Zhu L (2005) Environmental microbiology-on-a-chip and its future impacts. Trends Biotechnol 23:174–179PubMedGoogle Scholar
  61. Liu WT, Mirzabekov AD, Stahl DA (2001) Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach. Environ Microbiol 3:619–629PubMedGoogle Scholar
  62. Liu WT, Guo H, Wu JH (2007) Effects of target length on the hybridization efficiency and specificity of rRNA-based oligonucleotide microarrays. Appl Environ Microbiol 73:73–82PubMedGoogle Scholar
  63. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081PubMedGoogle Scholar
  64. Loy A, Kusel K, Lehner A, Drake HL, Wagner M (2004) Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Appl Environ Microbiol 70:6998–7009PubMedGoogle Scholar
  65. Loy A, Schulz C, Lucker S, Schopfer-Wendels A, Stoecker K, Baranyi C, Lehner A, Wagner M (2005) 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “Rhodocyclales”. Appl Environ Microbiol 71:1373–1386PubMedGoogle Scholar
  66. Miao V, Davies J (2008) Metagenomics and antibiotic discovery from uncultivated bacteria. Microbil Monogr. doi: 10.1007/7171_2008_8Google Scholar
  67. Moreno-Paz M, Parro V (2006) Amplification of low quantity bacterial RNA for microarray studies: time-course analysis of Leptospirillum ferrooxidans under nitrogen-fixing conditions. Environ Microbiol 8:1064–1073PubMedGoogle Scholar
  68. Murray AE, Lies D, Li G, Nealson K, Zhou J, Tiedje JM (2001) DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc Natl Acad Sci USA 98:9853–9858PubMedGoogle Scholar
  69. Ochman H, Santos SR (2005) Exploring microbial microevolution with microarrays. Infect Genet Evol 5:103–108PubMedGoogle Scholar
  70. Ochman H, Lerat E, Daubin V (2005) Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci USA 102 Suppl 1:6595–6599Google Scholar
  71. Parro V, Moreno-Paz M (2003) Gene function analysis in environmental isolates: the nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans. Proc Natl Acad Sci USA 100:7883–7888PubMedGoogle Scholar
  72. Parro V, Moreno-Paz M, Gonzalez-Toril E (2007) Analysis of environmental transcriptomes by DNA microarrays. Environ Microbiol 9:453–464PubMedGoogle Scholar
  73. Peplies J, Glockner FO, Amann R (2003) Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes. Appl Environ Microbiol 69:1397–1407PubMedGoogle Scholar
  74. Perreten V, Vorlet-Fawer L, Slickers P, Ehricht R, Kuhnert P, Frey J (2005) Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J Clin Microbiol 43:2291–2302PubMedGoogle Scholar
  75. Podar, Keller, Hugenholtz (2008) Single cell whole genome amplification of uncultivated organisms. Microbil Monogr. doi: 10.1007/7171_2008_10Google Scholar
  76. Podar M, Abulencia CB, Walcher M, Hutchison D, Zengler K, Garcia JA, Holland T, Cotton D, Hauser L, Keller M (2007) Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl Environ Microbiol 73:3205–3214PubMedGoogle Scholar
  77. Polz MF, Bertilsson S, Acinas SG, Hunt D (2003) A(r)Ray of hope in analysis of the function and diversity of microbial communities. Biol Bull 204:196–199PubMedGoogle Scholar
  78. Pozhitkov A, Chernov B, Yershov G, Noble PA (2005) Evaluation of gel-pad oligonucleotide microarray technology by using artificial neural networks. Appl Environ Microbiol 71:8663–8676PubMedGoogle Scholar
  79. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649PubMedGoogle Scholar
  80. Rhee SK, Liu X, Wu L, Chong SC, Wan X, Zhou J (2004) Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol 70:4303–4317PubMedGoogle Scholar
  81. Ro HS, Jung SO, Kho BH, Hong HP, Lee JS, Shin YB, Kim MG, Chung BH (2005) Surface plasmon resonance imaging-based protein array chip system for monitoring a hexahistidine-tagged protein during expression and purification. Appl Environ Microbiol 71:1089–1092PubMedGoogle Scholar
  82. Rudi K, Skulberg OM, Skulberg R, Jakobsen KS (2000) Application of sequence-specific labeled 16S rRNA gene oligonucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridization. Appl Environ Microbiol 66:4004–4011PubMedGoogle Scholar
  83. Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, Falkow S (2000) A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci USA 97:14668–14673PubMedGoogle Scholar
  84. Saleh-Lakha S, Miller M, Campbell RG, Schneider K, Elahimanesh P, Hart MM, Trevors JT (2005) Microbial gene expression in soil: methods, applications and challenges. J Microbiol Methods 63:1–19PubMedGoogle Scholar
  85. Sebat JL, Colwell FS, Crawford RL (2003) Metagenomic profiling: microarray analysis of an environmental genomic library. Appl Environ Microbiol 69:4927–4934PubMedGoogle Scholar
  86. Sessitsch A, Gyamfi S, Stralis-Pavese N, Weilharter A, Pfeifer U (2002) RNA isolation from soil for bacterial community and functional analysis: evaluation of different extraction and soil conservation protocols. J Microbiol Methods 51:171–179PubMedGoogle Scholar
  87. Steward GF, Jenkins BD, Ward BB, Zehr JP (2004) Development and testing of a DNA macroarray to assess nitrogenase (nifH) gene diversity. Appl Environ Microbiol 70:1455–1465PubMedGoogle Scholar
  88. Stralis-Pavese N, Sessitsch A, Weilharter A, Reichenauer T, Riesing J, Csontos J, Murrell JC, Bodrossy L (2004) Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers. Environ Microbiol 6:347–363PubMedGoogle Scholar
  89. Sunkara V, Hong BJ, Park JW (2007) Sensitivity enhancement of DNA microarray on nano-scale controlled surface by using a streptavidin-fluorophore conjugate. Biosens Bioelectron 22:1532–1537PubMedGoogle Scholar
  90. Taroncher-Oldenburg G, Griner EM, Francis CA, Ward BB (2003) Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl Environ Microbiol 69:1159–1171PubMedGoogle Scholar
  91. Thompson M, Cheran LE, Zhang MQ, Chacko M, Huo H, Sadeghi S (2005) Label-free detection of nucleic acid and protein microarrays by scanning Kelvin nanoprobe. Biosens Bioelectron 20:1471–1481PubMedGoogle Scholar
  92. Tiquia SM, Wu L, Chong SC, Passovets S, Xu D, Xu Y, Zhou J (2004) Evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in environmental samples. Biotechniques 36:664–675PubMedGoogle Scholar
  93. Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245PubMedGoogle Scholar
  94. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557PubMedGoogle Scholar
  95. Tsai YL, Le JY, Olson BH (2003) Magnetic bead hybridization to detect enterotoxigenic Escherichia coli strains associated with cattle in environmental water sources. Can J Microbiol 49:391–398PubMedGoogle Scholar
  96. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43PubMedGoogle Scholar
  97. Urakawa H, El Fantroussi S, Smidt H, Smoot JC, Tribou EH, Kelly JJ, Noble PA, Stahl DA (2003) Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays. Appl Environ Microbiol 69:2848–2856PubMedGoogle Scholar
  98. Van Nostrand JD, Khijniak TV, Gentry TJ, Novak MT, Sowder AG, Zhou JZ, Bertsch PM, Morris PJ (2007) Isolation and characterization of four gram-positive nickel-tolerant microorganisms from contaminated sediments. Microb Ecol 53:670–682Google Scholar
  99. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74PubMedGoogle Scholar
  100. Volkov I, Banavar JR, Maritan A (2006) Comment on “Computational improvements reveal great bacterial diversity and high metal toxicity in soil”. Science 313:918; author reply 918Google Scholar
  101. Wagner M, Nielsen PH, Loy A, Nielsen JL, Daims H (2006) Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr Opin Biotechnol 17:83–91PubMedGoogle Scholar
  102. Wagner M, Smidt H, Loy A, Zhou J (2007) Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb Ecol 53:498–506PubMedGoogle Scholar
  103. Wan Y, Broschat SL, Call DR (2007) Validation of mixed-genome microarrays as a method for genetic discrimination. Appl Environ Microbiol 73:1425–1432PubMedGoogle Scholar
  104. Wilkes T, Laux H, Foy CA (2007) Microarray data quality – review of current developments. Omics 11:1–13PubMedGoogle Scholar
  105. Wilson KH, Wilson WJ, Radosevich JL, DeSantis TZ, Viswanathan VS, Kuczmarski TA, Andersen GL (2002) High-density microarray of small-subunit ribosomal DNA probes. Appl Environ Microbiol 68:2535–2541PubMedGoogle Scholar
  106. Wu LY, Thompson DK, Li GS, Hurt RA, Tiedje JM, Zhou JZ (2001) Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 67:5780–5790PubMedGoogle Scholar
  107. Wu LY, Thompson DK, Liu XD, Fields MW, Bagwell CE, Tiedje JM, Zhou JZ (2004) Development and evaluation of microarray-based whole-genome hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Technol 38:6775–6782PubMedGoogle Scholar
  108. Wu LY, Liu X, Schadt CW, Zhou JZ (2006) Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microbiol 72:4931–4941PubMedGoogle Scholar
  109. Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA (2007) Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J 1:163–179PubMedGoogle Scholar
  110. Yilmaz LS, Noguera DR (2004) Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl Environ Microbiol 70:7126–7139PubMedGoogle Scholar
  111. Yilmaz LS, Okten HE, Noguera DR (2006) Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl Environ Microbiol 72:733–744PubMedGoogle Scholar
  112. Zhou X, Zhou J (2004) Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by using dye-doped core-shell silica nanoparticles. Anal Chem 76:5302–5312PubMedGoogle Scholar
  113. Zhou X, Wu L, Zhou J (2004) Fabrication of DNA microarrays on nanoengineered polymeric ultrathin film prepared by self-assembly of polyelectrolyte multilayers. Langmuir 20:8877–8885PubMedGoogle Scholar
  114. Zhou J (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute for Environmental Genomics, Department of Botany and MicrobiologyUniversity of OklahomaNormanUSA
  2. 2.Department of Soil & Crop SciencesTexas A&M UniversityCollege StationUSA

Personalised recommendations