Skip to main content

General Model of Microbial Uncultivability

  • Chapter
  • First Online:
Uncultivated Microorganisms

Part of the book series: Microbiology Monographs ((MICROMONO,volume 10))

Abstract

It has been known for over a century that only a small percent of cells from environmental samples form colonies on standard media (Great Plate Count Anomaly, Staley and Konopka (Annu Rev Microbiol 39:321–346, 1985). This chapter focuses on the causes of this disparity, and describes new cultivation technologies aiming to close the gap. It summarizes the original and literature data on the biology of “uncultivable” species\uncultivable\ species is summarized, and the nature of the restrictions likely limiting the growth of these species is discussed. This analysis leads to a novel model of the microbial life cycle in nature, termed the “scout model.” We argue that if microbial behavior in vivo conforms to the scout model, this will by necessity manifest itself in vitro as the Great Plate Count Anomaly. The scout model also draws connections to other aspects of microbial behavior, such as viability – but not cultivability – of some cells, an apparent slow growth of certain species, seeming ability of microbes to persist in the presence of unfavorable factors, including antibiotics, and latent infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoi Y, Kinoshita T, Hata T, Ohta H, Obokata H, Tsuneda S (2009) Hollow fiber membrane chamber as a device for in situ environmental cultivation. Appl Environ Microbiol

    Google Scholar 

  • Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577–587

    Article  PubMed  CAS  Google Scholar 

  • Becskei A, Seraphin B, Serrano L (2001) Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion. EMBO J 20:2528–2535

    Article  PubMed  CAS  Google Scholar 

  • Boetius A et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  PubMed  CAS  Google Scholar 

  • Bogosian G, Bourneuf EV (2001) A matter of bacterial life and death. EMBO Rep 2:770–774

    Article  PubMed  CAS  Google Scholar 

  • Bogosian G, Morris PJ, O'Neil JP (1998) A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. Appl Environ Microbiol 64:1736–1742

    PubMed  CAS  Google Scholar 

  • Bollmann A, Lewis K, Epstein SS (2007) Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73:6386–6390

    Article  PubMed  CAS  Google Scholar 

  • Bollmann A, Palumbo T, Lewis K, Epstein SS (2009) Isolation and characterization of novel bacteria from contaminated subsurface sediments. ISME J Bollmann A, Palumbo T, Lewis K, Epstein SS (2009) Isolation and characterization of novel bacteria from contaminated subsurface sediments. ISME J

    Google Scholar 

  • Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987

    Article  PubMed  CAS  Google Scholar 

  • Buchanan RE (1918) Life phases in a bacterial culture. J Infect Dis 23:109–125

    Google Scholar 

  • Buerger S, Hong S-H, Lucey K, Epstein SS (2008) Single-cell approach to microbial cultivation reveals an unusual growth strategy. In: Abstracts of the 11th International Society for Microbial Ecology Symposium, Cairns, Australia, August 2008

    Google Scholar 

  • Butkevich NV, Butkevich VS (1936) Multiplication of sea bacteria depending on the composition of the medium and on temperature. Microbiology 5:322–343

    Google Scholar 

  • Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891

    PubMed  CAS  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Choi PJ, Cai L, Frieda K, Xie XS (2008) A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322:442–446

    Article  PubMed  CAS  Google Scholar 

  • Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885

    Article  PubMed  CAS  Google Scholar 

  • Davis KE, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834

    Article  PubMed  CAS  Google Scholar 

  • Delpy LP, Beranger G, Kaweh M (1956) Method of counting living bacteria. Ann Inst Pasteur 91:112–114

    CAS  Google Scholar 

  • Dubnau D, Losick R (2006) Bistability in bacteria. Mol Microbiol 61:564–572

    Article  PubMed  CAS  Google Scholar 

  • Epstein SS (2009) Microbial awakenings. Nature 457:1083

    Google Scholar 

  • Ferrari BC, Binnerup SJ, Gillings M (2005) Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 71:8714–8720

    Article  PubMed  CAS  Google Scholar 

  • Ferrell JE Jr (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14:140–148

    Article  PubMed  CAS  Google Scholar 

  • Finkel SE, Kolter R (1999) Evolution of microbial diversity during prolonged starvation. Proc Natl Acad Sci U S A 96:4023–4027

    Article  PubMed  CAS  Google Scholar 

  • Finkel SE, Zinser E, Kolter R (2000) Long-term survival and evolution in stationary phase. In: Storz G, Hengge-Aronis R (eds) Bacterial Stress Responses. ASM, Washington, DC, pp 231–238

    Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275

    PubMed  CAS  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  PubMed  CAS  Google Scholar 

  • Gray TRG (1976) Survival of vegetative microbes in soil. Symp Soc Gen Microbiol 26:327–364

    CAS  Google Scholar 

  • Huber JA et al (2007) Microbial population structures in the deep marine biosphere. Science 318:97–100

    Article  PubMed  CAS  Google Scholar 

  • Jannasch HW, Jones GE (1959) Bacterial populations in seawater as determined by different methods of enumeration. Limnol Oceanogr 4:128–139

    Article  Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating uncultivable microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov SI, Dubinina GA, Lapteva NA (1979) Biology of oligotrophic bacteria. Annu Rev Microbiol 33:377–387

    Article  PubMed  CAS  Google Scholar 

  • Maamar H, Dubnau D (2005) Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56:615–624

    Article  PubMed  CAS  Google Scholar 

  • McInerney MJ et al (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  PubMed  CAS  Google Scholar 

  • Nichols D et al (2008) Short peptide induces an uncultivable microorganism to grow in vitro. Appl Environ Microbiol 74:4889–4897

    Article  PubMed  CAS  Google Scholar 

  • Novitsky JA, Morita RY (1976) Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl Environ Microbiol 32:617–622

    PubMed  CAS  Google Scholar 

  • Novitsky JA, Morita RY (1978) Possible strategy for the survival of marine bacteria under starvation conditions. Mar Biol 48:289–295

    Article  Google Scholar 

  • Nystrom T (2003) Nonculturable bacteria: programmed survival forms or cells at death's door? Bioessays 25:204–211

    Article  PubMed  CAS  Google Scholar 

  • Pedros-Alio C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (1976) Death in macrobes and microbes. In: Gray TRG, Postgate JR (eds) The survival of vegetative microbes. Cambridge University Press, Cambridge, pp 1–19

    Google Scholar 

  • Postgate JR, Hunter JR (1962) The survival of starved bacteria. J Gen Microbiol 29:233–263

    PubMed  CAS  Google Scholar 

  • Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394

    Article  PubMed  CAS  Google Scholar 

  • Rappe MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633

    Article  PubMed  CAS  Google Scholar 

  • Santo Domingo JW, Harmon S, Bennett J (2000) Survival of Salmonella species in river water. Curr Microbiol 40:409–417

    Article  PubMed  CAS  Google Scholar 

  • Schink B (2002) Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81:257–261

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691

    Article  PubMed  Google Scholar 

  • Sogin ML et al. (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103:12115–12120

    Article  PubMed  CAS  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  PubMed  CAS  Google Scholar 

  • Stevenson LH (1978) A case for bacterial dormancy in aquatic systems. Microb Ecol 4:127–133

    Article  Google Scholar 

  • Stewart GR, Robertson BD, Young DB (2003) Tuberculosis: a problem with persistence. Nat Rev Microbiol 1:97–105

    Article  PubMed  CAS  Google Scholar 

  • Torrella F, Morita RY (1981) Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl Environ Microbiol 41:518–527

    PubMed  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  PubMed  CAS  Google Scholar 

  • Wilson GS (1922) The proportion of viable bacteria in young cultures with especial reference to the technique employed in counting. J Bacteriol 7:405–446

    PubMed  CAS  Google Scholar 

  • Winogradsky S (1924) Sur la microflore autochtone de la terre arable. C R Acad Sci 178:1236–1239

    Google Scholar 

  • Xu H-S, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of non-culturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323

    Article  Google Scholar 

  • Zambrano MM, Kolter R (1996) GASPing for life in stationary phase. Cell 86:181–184

    Article  PubMed  CAS  Google Scholar 

  • Zambrano MM, Siegele DA, Almiron M, Tormo A, Kolter R (1993) Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science 259:1757–1760

    Article  PubMed  CAS  Google Scholar 

  • Zieg J, Silverman M, Hilmen M, Simon M (1977) Recombinational switch for gene expression. Science 196:170–172

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slava S. Epstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Epstein, S.S. (2009). General Model of Microbial Uncultivability. In: Epstein, S. (eds) Uncultivated Microorganisms. Microbiology Monographs, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85465-4_2

Download citation

Publish with us

Policies and ethics