Skip to main content

Metabolism of Sugars and Organic Acids by Lactic Acid Bacteria from Wine and Must

  • Chapter
Book cover Biology of Microorganisms on Grapes, in Must and in Wine

The energy metabolism of Oenococcus oeni and of some other lactic acid bacteria from wine using sugars and organic acids is discussed. O. oeni is a heterofermentative lactic acid bacterium degrading hexoses by the phosphoketolase pathway. Reoxidation of NAD(P)H by acetyl-P (or acetyl-CoA) in the ethanol pathway represents a limiting step of the pathway. O. oeni varies the classical phosphoketolase pathway to bypass this step by the formation of erythritol. Substrates like fructose, pyruvate, citrate (as a source of pyruvate) and O2 are used additionally or preferred acceptors for NAD(P) reoxidation. As a consequence, acetyl-P is excreted as acetate. The growth rate of the bacteria increases when the limiting ethanol pathway is by-passed. In addition, O. oeni ferments organic acids (citrate, malate and pyruvate), but only pyruvate supports growth when present as the sole substrate. Some other strains of lactic acid bacteria are able to metabolize L-tartrate and fumarate. The metabolic routes and their significance are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amachi T, Imamoto S, Yoshizumi H, Senoh S (1970) Structure and synthesis of a novel pantothenic acid derivative, the microbial growth factor from tomato juice. Tetrahedron Lett 56:4871–4874

    Article  PubMed  CAS  Google Scholar 

  • Bartowsky FJ, Henschke PA (2004) The ‘ buttery’ attribute of wine—diacetyl—desirability, spoilage and beyond. Int J Food Microbiol 96:235–252

    Article  PubMed  CAS  Google Scholar 

  • Beelman RB, Gavin III A, Keen RM (1977) A new strain ofLeuconostoc oenosfor induced malolactic fermentation in eastern wines. Am J Enol Vitic 28:159–165

    CAS  Google Scholar 

  • Caspritz G, Radler F (1983) Malolactic enzyme ofLactobacillus plantarum. J Biol Chem 258: 4907–4910

    PubMed  CAS  Google Scholar 

  • Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 7:113–130

    PubMed  CAS  Google Scholar 

  • Coucheney F, Desroche N, Bou M, Tourdot-Marechal R, Dulau L, Guzzo J (2005) A new approach for selection ofOenococcus oenistrains in order to produce malolactic starters. Int J Food Microbiol 105:463–470

    Article  PubMed  CAS  Google Scholar 

  • Dittrich HH, Großmann M (2005) Handbuch der Lebensmitteltechnologie—Mikrobiologie des Weines. Ulmer, Stuttgart

    Google Scholar 

  • Drinan DF, Tobin S, Cogan TM (1976) Citric acid metabolism in hetero- and homofermentative lactic acid bacteria. Appl Environ Microbiol 31: 481–486

    PubMed  CAS  Google Scholar 

  • Garvie EI (1967) The growth factor and amino acid requirements of species of the genusLeuconostoc, includingLeuconostoc paramesenteroides(sp. nov.) andLeuconostoc oenos. J Gen Microbiol 48:439–447

    PubMed  CAS  Google Scholar 

  • Garvie EI (1986) GenusLeuconostoc. In: Bergey's manual of systematic bacteriology, vol. 2. Sneath PHA, Mair NS, Sharpe MA, Holt JG (eds) Williams&Wilkins, Baltimore, MD, pp 1071–1075

    Google Scholar 

  • Hache C, Cachon R, Wache Y, Belguendoouz T, Riondet C, Deraedt A, Divies C (1999) Influence of lactose-citrate co-metabolism on the differences of growth and energetics inLeuconostoc lactis, Leuconostoc mesenteroidesspp.mesenteroidesandLeuconostoc mesenteroidesssp.cremoris. Syst Appl Microbiol 22:507–513

    PubMed  CAS  Google Scholar 

  • Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie van Leeuwenhoek 82:3–27

    Article  PubMed  CAS  Google Scholar 

  • Liu SQ (2002) A review: malolactic fermentation in wine—beyond deacidification. J Appl Microbiol 92:589–601

    Article  PubMed  CAS  Google Scholar 

  • Llaubères RM, Richard B, Lonvaud A, Dubourdieu D, Fournet B (1990) Structure of an exocellular β-d-glucan fromPediococcus sp. a wine lactic bacteria. Carbohydr Res 203:103–107

    Article  PubMed  Google Scholar 

  • Lolkema JS, Poolman B, Konings WN (1995) Role of scalar protons in metabolic energy generation in lactic acid bacteria. J Bioenerg Biomembr 27:467–473

    Article  PubMed  CAS  Google Scholar 

  • Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwenhoek 76:317–331

    Article  PubMed  CAS  Google Scholar 

  • Kim OB, Unden G (2007) The l-tartrate/succinate antiporter TtdT (YgjE) of l-tartrate fermentation inEscherichia coli. J Bacteriol 189:1597–1603

    Article  PubMed  CAS  Google Scholar 

  • Koo OK, Jeong DW, Lee JM, Kim MJ, Lee JH, Chang HC, Kim JH, Lee HJ (2005) Cloning and characterization of the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) inLeuconostoc mesenteroidesisolated from kimchi. Biotechnol Lett 27:505–510

    Article  PubMed  CAS  Google Scholar 

  • Maicas S, Ferrer S, Pardo I. (2002) NAD(P)H regeneration is the key for heterolactic fermentation of hexoses inOenococcus oeni. Microbiology 148:325–332

    PubMed  CAS  Google Scholar 

  • Martin M, Magni C, Lopez P, de Mendoza D (2000) Transcriptional control of the citrate-induciblecitMCDEFGRPoperon, encoding genes involved in citrate fermentation inLeuconostoc paramesenteroides.J Bacteriol 182:3904–3912

    Article  PubMed  CAS  Google Scholar 

  • Marty-Teysset C, Lolkema JS, Schmitt P, Divies C, Konings WN (1995) Membrane potential generating transport of citrate and malate catalyzed by CitP ofLeuconostoc mesenteroides. J Biol Chem 270:25370–25376

    Article  PubMed  CAS  Google Scholar 

  • Marty-Teysset C, Posthuma C, Lolkema JS, Schmitt P, Divies C, Konings WN (1996) Proton motive force generation by citrolactic fermentation inLeuconostoc mesenteroides. J Bacteriol 178:2178–2185

    PubMed  CAS  Google Scholar 

  • Mayer K (1974) Nachteilige Auswirkungen auf die Weinqualität bei ungünstig verlaufendem biologischen Säureabbau. Schweiz Z Obst- u, Weinb. 110:385–391

    Google Scholar 

  • Medina de Figueroa R, Alvarez F, Pesce de Ruiz Holgado A, Oliver G, Sesma F (2000) Citrate utilization by homo-and heterofermentative lactobacilli. Microbiol Res 154:313–320

    PubMed  CAS  Google Scholar 

  • Meile L, Rohr LM, Geissmann TA, Herenberger M, Teuber M (2001) Characterization of the d-xylulose 5-phosphate/d-fructose 6-phosphoketolase gene (xfp) fromBifidobacterium lactis. J Bacteriol 183:2929–2936

    Article  PubMed  CAS  Google Scholar 

  • Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis ofOenococcus oeniPSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Arribas MV, Polo MC (2005) Winemaking biochemistry and microbiology: current knowledge and future trends. Crit Rev Food Sci Nutr 45:265–286

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JC, Richelieu M (1999) Control of flavour development in wine during and after malolactic fermentation byOenococcus oeni. Appl Environ Microbiol 65:740–745

    PubMed  CAS  Google Scholar 

  • Nuraida L, Grigolava I, Owens JD, Campbell-Platt G (1992) Oxygen and pyruvate as external electron acceptors forLeuconostocspp. J Appl Bacteriol 72:517–522

    CAS  Google Scholar 

  • Pilone GJ, Kunkee RE (1976) Stimulatory effect of malo-lactic fermentation on the growth rate ofLeuconostoc oenos. Appl Environ Microbiol 32:405–408

    PubMed  CAS  Google Scholar 

  • Poolman B, Molenaar D, Smid EJ, Ubbink T, Abee T, Renault PP, Konings WN (1991) Malolactic fermentation: Electrogenic malate uptake and malate/lactate antiport generate metabolic energy. J Bacteriol 173:6030–6037

    PubMed  CAS  Google Scholar 

  • Radler F (1958) Untersuchung des biologischen Säureabbaus im Wein. III. Die Energiequelle der Äpfelsäure-abbauenden Bakterien. Arch Microbiol 31:224–230

    Google Scholar 

  • Radler, F (1966) Die mikrobiologischen Grundlagen des Säureabbaus im Wein. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II. 120:237–287

    CAS  Google Scholar 

  • Radler, F (1986) Das in den USA zugelassene Säuerungsmittel Fumarsäure und seine Wirkung – Übersicht. Wein-Wiss. 41:47–50

    CAS  Google Scholar 

  • Radler F, Brohl K (1984) The metabolism of several carboxylic acids by lactic acid bacteria. Z Lebensm Unters Forsch 179:228–231

    Article  PubMed  CAS  Google Scholar 

  • Radler F, Yannissis, C (1972) Weinsäureabbau bei Milchsäurebakterien. Arch Microbiol 82:219–238

    CAS  Google Scholar 

  • Ramos A, Poolman B, Santos H, Lolkema JS, Konings WN (1994) Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force inLeuconostoc oenos. J Bacteriol 176:4899–4905

    PubMed  CAS  Google Scholar 

  • Richter H, Vlad D, Unden G (2001) Significance of pantothenate for glucose fermentation byOenococcus oeniand for suppression of the erythritol and acetate production. Arch Microbiol 175:26–31

    Article  PubMed  CAS  Google Scholar 

  • Richter H, Hamann I, Unden G (2003a) Use of the mannitol pathway in fructose fermentation ofOenococcus oenidue to limiting redox regeneration capacity of the ethanol pathway. Arch Microbiol 179:227–233

    CAS  Google Scholar 

  • Richter H, De Graaf AA, Hamann I, Unden G (2003b) Significance of phosphoglucose isomerase for the shift between heterolactic and mannitol fermentation of fructose byOenococcus oeni. Arch Microbiol 180:465–370

    Article  CAS  Google Scholar 

  • Rodas AM, Ferrer S, Pardo I (2005) Polyphasic study of wineLactobacillusstrains:taxonomic implications. Int J Syst Evol Microbiol 55:197–207

    Article  PubMed  CAS  Google Scholar 

  • Salema M, Lolkema JS, San Romao MV, Loureiro Dias MC (1996) The proton motive force generated inLeuconostoc oenosby l-malate fermentation. J Bacteriol 178:3127–3132

    PubMed  CAS  Google Scholar 

  • Salou P, Loubiere P, Pareilleux A (1994) Growth and energetics ofLeuconostoc oenosduring cometabolism of glucose with citrate or fructose. Appl Environ Microbiol 60:1459–1466

    PubMed  CAS  Google Scholar 

  • Schmitt P, Vasseur C, Palip V, Huang DQ, Divies C, Prevost H (1997) Diacetyl and acetoin production from the co-metabolism of citrate and xylose byLeuconostoc mesenteroidessubsp.mesenteroides. Appl Microbiol Biotechnol 47:715–718

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Kastner CN, Meyer M, Wessel M, Dimroth P, Bott M (2002) Identification of a gene cluster inKlebsiella pneumoniaewhich includescitX, a gene required for biosynthesis of the citrate lyase prosthetic group. J Bacteriol 184:2439–2446

    Article  PubMed  CAS  Google Scholar 

  • Sender PD, Martin MG, Peiru S, Magni C (2004) Characterization of an oxaloacetate decarboxy lase that belongs to the malic enzyme family. FEBS Lett 570:17–22

    Article  Google Scholar 

  • Starrenburg MJ, Hugenholtz J (1991) Citrate fermentation byLactococcusandLeuconostocspp. Appl Environ Microbiol 57:3535–3540

    PubMed  CAS  Google Scholar 

  • Stolz P, Vogel RF, Hammes WP (1995) Utilization of electron acceptors by lactobacilli isolated from sour dough. Z Lebensm Unters Forsch 201:402–410

    Article  CAS  Google Scholar 

  • Veiga-Da-Cunha M, Firme P, San Romao MV, Santos H (1992) Application of [13C] nuclear magnetic resonance to elucidate the unexpected biosynthesis of erythritol byLeuconostoc oenos. Appl Environ Microbiol 58:2271–2279

    PubMed  CAS  Google Scholar 

  • Veiga-Da-Cunha M, Santos H, van Schaftingen E (1993) Pathway and regulation of erythritol formation inLeuconostoc oenos. J Bacteriol 175:3941–3948

    PubMed  CAS  Google Scholar 

  • Wagner N, Tran QH, Richter H, Selzer PM, Unden G (2005) Pyruvate fermentation byOenococcus oeniandLeuconostoc mesenteroidesand role of pyruvate dehydrogenase in anaerobic fermentation. Appl Environ Microbiol 71:4966–4971

    Article  PubMed  CAS  Google Scholar 

  • Würdig W, Woller R (1989) Handbuch der Lebensmitteltechnologie—Chemie des Weins. Ulmer, Stuttgart.

    Google Scholar 

  • Yin X, Chambers JR, Barlow K, Park AS, Wheatcroft R (2005) The gene encoding xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (xfp) is conserved amongBifidobacteriumspecies within a more variable region on the genome and both are useful for strain identification. FEMS Microbiol Lett 246:251–257

    Article  PubMed  CAS  Google Scholar 

  • Zaunmüller T, Eichert M, Richter H, Unden G (2006) Variations in the energy metabolism of bio-technologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol 72:421–429

    Article  PubMed  Google Scholar 

  • Zhang, D.-S. and Lovitt, R. W. (2005). Studies on growth and metabolism ofOenococcus oenion sugars and sugar mixtures. J Appl Microbiol 99: 565–572

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Unden, G., Zaunmüller, T. (2009). Metabolism of Sugars and Organic Acids by Lactic Acid Bacteria from Wine and Must. In: König, H., Unden, G., Fröhlich, J. (eds) Biology of Microorganisms on Grapes, in Must and in Wine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85463-0_7

Download citation

Publish with us

Policies and ethics